示波器实验报告讨论 第1篇
1.垂直偏转因数选择(VOLTS/DIV)和微调
在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。
踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。
每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是。
在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。
2.时基选择(TIME/DIV)和微调
时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。
“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS×(1/10)=μS
示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。
示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。
引言:
示波器是一种广泛应用于电子领域的测试仪器,它能够观察和测量电压信号随时间变化的波形。在工程技术和科学研究领域,示波器被广泛应用于各种电路、信号和系统的分析与测试。本次实验将通过对示波器的基本原理和使用方法进行学习,以及利用示波器进行一些简单电路的测试,从而更好地理解示波器在电子测量中的重要作用。
一、示波器的基本原理
示波器是一种用于显示和测量电压信号波形的仪器。它通过垂直与水平方向上的电子束偏转,将电压信号转换为可视的波形,从而让我们能够直观地观察信号的振幅、频率、相位等特性。示波器的基本组成包括垂直放大器、水平放大器、扫描系统和示波管等部分。垂直放大器负责信号的纵向放大,而水平放大器则控制扫描线的水平移动,从而形成完整的波形。示波器的工作原理复杂而精密,但通过实践操作,我们可以更好地理解其工作过程。
二、示波器的使用方法
1. 示波器的接线方法
在进行示波器测试时,首先需要将待测电路的输出信号通过探头连接到示波器的输入端,并根据信号的特性选择合适的电压档位和耦合方式。一般情况下,示波器的输入端有直流(DC)和交流(AC)耦合两种方式可供选择,同时也可以根据信号的幅值范围选择合适的电压档位,以避免损坏示波器。
2. 示波器的操作技巧
在观察波形时,我们可以通过调节示波器的水平和垂直灵敏度,使波形适应屏幕的显示范围。此外,还可以通过触发功能来锁定特定的波形,以便更清晰地观察信号的特征。在使用示波器时,需要注意保持良好的接地,避免产生误差和干扰。
三、示波器实验
本次实验选取了简单的RC电路作为测试对象,通过示波器观察电压信号的波形变化,从而验证示波器的测量功能。实验中我们可以通过改变电路中的电阻和电容数值,观察波形的变化情况,进一步理解RC电路的响应特性。
四、实验结果分析
实验结果表明,在RC电路中,当改变电阻或电容的数值时,输出信号的波形会发生相应的变化。通过示波器测量,我们能够清晰地观察到信号的上升时间、下降时间以及衰减特性,从而更好地理解RC电路的工作原理。因此,示波器在电子测量中具有重要的应用价值。
结论:
通过本次示波器实验,我们更深入地了解了示波器的基本原理和使用方法,同时也通过实际测试加深了对电路特性的理解。示波器作为一种重要的电子测量仪器,在科研和工程实践中发挥着不可替代的作用,为我们提供了直观、准确的电压信号显示和测量手段。希望通过今后的学习和实践,能更好地运用示波器这一工具,开展更深入的电子测量与研究。
【引言】
示波器是一种用来观察电信号波形的重要仪器,广泛应用于电子、通信、医疗等领域。本实验旨在通过对示波器的基本操作和功能进行学习,掌握示波器的使用方法,以及对不同类型的波形进行分析和测量。
【实验目的】
1. 了解示波器的基本结构和工作原理;
2. 掌握示波器的基本操作;
3. 使用示波器对不同类型的波形进行观测和测量。
【实验仪器】
1. 示波器(型号:XXX);
2. 示波器探头;
3. 信号发生器;
4. 直流电源。
【实验原理】
示波器是一种能够将电压随时间变化的波形显示在屏幕上的仪器。当待测信号加到示波器的输入端时,示波器会对信号进行放大、偏置和加工处理,然后在屏幕上显示出整个过程。示波器通常具有触发、水平、垂直、扫描速率等控制功能,可以方便地对信号进行观测和测量。
【实验步骤】
1. 连接示波器和信号发生器:将信号发生器的输出端和示波器的输入端用示波器探头连接;
2. 打开示波器,并设置合适的触发方式、水平和垂直灵敏度;
3. 调节示波器触发和扫描控制,观察信号波形在示波器屏幕上的显示;
4. 更换不同频率、幅度的信号源,观察示波器的读数变化;
5. 切换示波器的不同测量模式,对波形进行测量分析。
【实验结果与分析】
通过实验,我们成功地掌握了示波器的基本操作方法,了解了示波器的触发、水平、垂直灵敏度的调节方法。在实验中,我们观测到了正弦波、方波、三角波等不同类型的信号波形,并成功地进行了测量和分析。
【实验总结】
通过本次实验,我们深入了解了示波器的使用方法和功能,掌握了基本的示波器操作技巧,提高了对信号波形观测和测量的能力。示波器作为电子技术中的重要工具,对于电子工程师和科研人员来说具有重要意义,它能够帮助我们更好地理解和分析各种电信号波形,为电子技术应用提供了可靠的支持。
【致谢】
感谢老师对本次实验的指导和帮助,也感谢实验室的工作人员对实验设备的维护和保障。
摘要:
本实验旨在模拟现实情境,通过实验的方式探索特定问题,并分析实验结果,以期得出结论并提出建议。本文将介绍实验的背景、实验设计、实验过程和结果分析,最终得出结论。
1. 背景
随着科技的发展,模拟实验在各个领域中得到了广泛的应用,特别是在医学、工程和社会科学领域。通过模拟实验,可以在受控的环境中重复实验条件,观察变量的变化,从而得出科学结论。本次模拟实验将围绕某一特定问题展开。
2. 实验设计
本次实验的设计包括确定实验目标、制定实验方案、确定实验变量、准备实验材料和设备等步骤。在确定实验目标的基础上,制定实验方案,明确实验的步骤和流程,以确保实验的严谨性和可行性。同时,根据实验目标和方案,确定实验变量,并准备实验所需的材料和设备。
3. 实验过程
实验过程分为实验前准备、实验操作和数据收集三个阶段。在实验前准备阶段,对实验材料和设备进行检查和准备工作,确保一切就绪。在实验操作阶段,按照实验方案进行操作,记录实验数据并注意观察实验现象。最后,在数据收集阶段,整理和分析实验数据,得出初步结论。
4. 结果分析
根据实验所得数据,进行数据分析和结果解释。利用统计方法对数据进行处理,计算相关指标并作图表展示,从而清晰地呈现实验结果。基于数据分析,对实验目标进行评估,并深入分析实验结果的意义和可能的影响因素。
5. 结论
结合实验目标和结果分析,得出本次实验的结论,并对实验过程中出现的问题进行总结和改进建议。同时,对未来可能的研究方向和实验优化方案进行展望,并提出相关建议。
总结:
模拟实验作为科学研究的重要手段,在科学研究、工程技术和社会发展中发挥着重要作用。通过模拟实验,能够在受控的条件下观察和研究特定问题,为科学研究和实际应用提供有效支持。希望通过本次实验报告,能够对模拟实验的设计和实施提供一定的借鉴和启示,促进科学研究和实验教学的不断进步与完善。
摘要: 本实验旨在验证氧气对火焰的必要性以及其在燃烧过程中的作用。通过观察不同条件下火焰的表现,以及对实验数据进行分析,得出了氧气对于火焰燃烧的重要性和影响。
引言: 火焰作为一种常见的燃烧现象,其生成和维持涉及到多种因素,而氧气作为燃烧的必需物质之一,其在火焰中的作用一直备受关注。通过本次实验,我们旨在深入探究氧气对火焰的影响,为燃烧理论提供更为具体的实验支持。
实验材料和方法:
1. 实验材料:酒精灯、玻璃罩、点火器、氧气气瓶、实验台
2. 实验方法:
- 实验一:在通风条件下,点燃酒精灯,观察火焰的形态和颜色。
- 实验二:在密闭的玻璃罩内点燃酒精灯,观察火焰的表现。
- 实验三:在有限氧气条件下,点燃酒精灯,观察火焰的变化。
实验结果:
1. 在通风条件下,火焰高度稳定,呈橙黄色,燃烧较为充分。
2. 在密闭的玻璃罩内,火焰逐渐熄灭,烟雾逐渐充斥罩内。
3. 在有限氧气条件下,火焰变得微弱,色泽变暗,燃烧不完全。
实验分析: 从实验结果可以得出以下结论:
1. 氧气是火焰燃烧的必要条件之一,缺乏氧气会导致火焰熄灭或燃烧不完全。
2. 燃烧过程中,氧气与燃料(酒精)发生化学反应,释放出能量,维持火焰的持续燃烧。
结论: 本次实验验证了氧气对火焰的必要性,证明了氧气在火焰燃烧中的重要作用。通过实验数据的分析,我们进一步认识到了氧气在燃烧过程中的关键作用,这对于深入理解燃烧现象具有重要意义。
致谢: 感谢实验室的支持和指导,以及实验过程中同学们的配合和参与。
参考文献:
1. Smith, John. _The Role of Oxygen in Combustion._ Journal of Combustion Studies, 2019.
2. Jones, Emily. _Understanding the Chemistry of Fire._ Chemical Review, 2022.
通过本次实验,我们不仅加深了对于火焰燃烧现象的认识,也为燃烧理论的研究提供了实验支持。希望此次实验结果能够对相关领域的研究和教学提供一定的参考价值。
劳动周实验是一项旨在探索劳动与生产力之间关系的实践活动。通过劳动周实验,参与者可以亲身体验劳动的价值和生产的成果,从而深刻理解劳动对个体和社会的重要性。本文将结合劳动周实验的经历,探讨劳动对我们的意义以及劳动周实验的意义。
实验过程
劳动周实验通常包括参与者进行一周长时间的劳动体验,期间不仅需要完成日常生活所需的劳动任务,还需要参与集体劳动和团体协作。在实验开始之初,参与者会被分配到不同的劳动岗位,例如农田劳作、手工艺制作、家政服务等,以全面体验不同类型的劳动。在整个实验过程中,参与者需要自行完成所有劳动任务,同时参与集体讨论和团队活动,以便更好地理解劳动的意义和价值。
在劳动周实验中,参与者往往需要面临一些挑战和困难,比如体力劳动的疲惫、技能劳动的学习曲线、人际关系的协调等。然而,正是通过这些挑战和困难,参与者才能真正体验到劳动的辛苦和成果,也更加珍惜劳动所带来的成就感。在实验的最后阶段,参与者往往会对劳动和生产力产生全新的认识和理解。
劳动的意义
劳动是人类生活的基础,是个体实现自我价值的重要途径。通过劳动,人们能够满足自己的生存需要,创造财富和价值,发挥自己的潜力,同时也为社会做出贡献。劳动不仅仅是为了生存,更是为了实现个体的自我价值和社会的发展进步。在劳动中,人们不断提升自己的技能和能力,实现自我实现和自我超越,从而获得内在的成就感和满足感。
劳动周实验的意义
劳动周实验通过让参与者亲身体验劳动的过程,使他们更加深刻地理解劳动对个体和社会的重要性。通过实践,人们可以感受劳动的辛苦和收获,增强对劳动的尊重和珍惜。同时,劳动周实验也促进了参与者之间的团队合作和协作能力,培养了他们的责任感和社会意识。通过劳动周实验,参与者不仅能够加深对劳动的认识,还能够培养出更加积极向上的人生态度和价值观。
劳动周实验是一次深入了解劳动意义的机会,通过亲身参与劳动,我们可以更加深刻地理解劳动对个体和社会的重要性,培养出更加积极向上的人生态度和价值观。劳动不仅带来物质上的收获,更重要的是实现个体的自我价值和社会的发展进步。希望通过劳动周实验,更多的人能够重新认识劳动,珍惜劳动,为劳动赋予更多的意义和价值。
实验报告作为学生在学习过程中的重要一部分,常常让人感到苦恼。每当老师布置实验报告时,不少同学都会面临一场挑战。但实验报告也是一次很好的学习机会,通过动手操作和总结,加深对知识的理解。通过这次实验报告的撰写,我学到了很多东西,下面就分享一下我的心得体会。
首先,在实验前充分准备是非常重要的。在实验之前,我会仔细阅读实验指导书,了解实验的目的、原理和步骤。此外,我还会提前熟悉实验设备和仪器的使用方法,以及安全注意事项。这样做可以帮助我更好地进行实验,减少失误和意外发生的可能性。
其次,在实验过程中,认真记录数据和观察现象也非常关键。实验中的数据和现象是实验报告的重要依据,只有准确记录并及时分析这些内容,才能保证实验报告的质量。在实验结束后,我会花时间整理数据,绘制图表,并进行分析和总结。
另外,撰写实验报告时,清晰的逻辑和准确的表达是至关重要的。实验报告需要包括实验目的、原理、实验步骤、数据记录和分析、实验结果等内容。在撰写时,我会按照顺序一步步展开,确保逻辑清晰、条理清楚。同时,语言要准确简洁,避免使用模棱两可的词语和表达,确保读者能够清晰理解。
最后,在收获心得体会的过程中,我发现实验报告不仅仅是对知识的检验,更是对自己学习能力的考验。通过撰写实验报告,我学会了如何合理利用时间,如何培养耐心和细致的态度,也更深刻地理解了实验中所涉及的知识点。这些都对我未来的学习和工作起到了积极的促进作用。
总的来说,实验报告的撰写是一次很好的学习体验。通过这次实验报告,我不仅加深了对知识的理解,提高了动手能力,还培养了细致耐心和逻辑思维能力。相信在今后的学习中,这些经验都会对我产生积极的影响。希望未来能够继续通过实验报告的撰写,不断提升自己的学习能力和科研素养。
示波器实验报告讨论 第2篇
示波器作为一种常用的电子测量仪器,在电子技术领域有着广泛的应用。通过本次实验,我们深入了解示波器的工作原理和使用方法,掌握其在测量电信号方面的基本操作和应用技巧。
一、实验目的
1、了解示波器的基本结构和工作原理。
2、掌握示波器的`基本操作方法,包括调节垂直灵敏度、水平扫描速度、触发方式等。
3、学会用示波器观察和测量各种电信号的波形、幅度、周期和频率等参数。
二、实验仪器
示波器、函数信号发生器、探头等。
三、实验原理
示波器是一种能够显示电信号波形的电子仪器,它通过在荧光屏上产生一个快速移动的亮点来描绘电信号的变化。示波器的主要组成部分包括垂直放大器、水平扫描发生器、触发电路和荧光屏等。
四、实验内容与步骤
1、熟悉示波器的面板操作
了解各控制旋钮的功能和作用。
练习调节亮度、聚焦、垂直位移和水平位移等。
2、观察正弦波信号
连接函数信号发生器和示波器,设置函数信号发生器输出正弦波信号。
调节示波器的垂直灵敏度和水平扫描速度,使正弦波波形稳定显示在屏幕上。
测量正弦波的幅度和周期,并计算其频率。
3、观察方波信号
改变函数信号发生器的输出为方波信号。
重复上述步骤,观察并测量方波的参数。
4、观察三角波信号
再次改变函数信号发生器的输出为三角波信号。
进行观察和测量。
五、实验数据与分析
1、正弦波
幅度:xx(V)
周期:xx(ms)
频率:xx(Hz)
2、方波
幅度:xx(V)
周期:xx(ms)
频率:xx(Hz)
3、三角波
幅度:xx(V)
周期:xx(ms)
频率:xx(Hz)
六、实验总结
通过本次实验,我们对示波器的使用有了更深入的了解和掌握。能够熟练地调节示波器的各项参数,准确地测量各种电信号的波形参数。但在实验过程中,也存在一些不足之处,如对某些旋钮的调节不够精确,导致测量结果存在一定的误差。在今后的学习和实验中,我们将进一步加强练习,提高实验技能和数据处理能力。
七、注意事项
1、正确连接示波器和信号发生器,避免短路或接错。
2、调节示波器参数时,应逐步进行,避免过度调节导致显示混乱。
3、实验结束后,关闭仪器设备,整理好实验器材。
示波器实验报告讨论 第3篇
示波器作为电子测量领域中的重要仪器,其广泛应用于科研、教学及工业生产中,能够将被测信号的波形直观显示在荧光屏上,便于观察、分析和测量。本实验目的是通过实际操作,使学生深入了解示波器的基本结构、工作原理以及使用方法,掌握利用示波器观测电信号波形、测量电压和频率等基本技能。通过本次实验,不仅能够加深对电子测量技术的理解,还能提升解决实际问题的能力。
实验目的
1、了解示波器的基本结构和工作原理。
2、掌握使用示波器和信号发生器的基本方法。
3、学会使用示波器观测电信号波形、电压幅值以及频率。
4、学习使用示波器观察李萨如图并测量频率。
实验器材
1、示波器×1
2、信号发生器×2
3、信号线×2
4、万用表(备用)
实验原理
示波器主要由示波管、电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统等组成。其核心部件是示波管,它利用电子束在电场中的偏转来描绘被测信号的波形。当被测信号加到Y轴偏转板上时,电子束在垂直方向上发生偏转;同时,锯齿波电压加到X轴偏转板上,使电子束在水平方向上产生扫描,从而在荧光屏上形成稳定的波形图。
示波器的工作原理可以概括为:将被测信号经过衰减、放大等处理后,分别加到示波管的X轴和Y轴偏转板上,通过控制电子束的偏转来描绘出信号的波形。
实验步骤
1、仪器准备
阅读示波器使用说明书,了解各旋钮的功能。
接通示波器电源开关,进行预热。
检查信号发生器是否正常工作,设定合适的输出频率和幅值。
2、观察基本波形
将信号发生器的输出接到示波器的Y轴输入端。
调节示波器的“扫描时间”旋钮,观察不同扫描速度下的波形变化。
调节“垂直偏转因数”旋钮,观察波形在垂直方向上的变化。
3、观察李萨如图
向示波器的X轴和Y轴分别输入两个频率相同或成简单整数比的正弦波信号。
调节“扫描时间”旋钮至“X-Y”模式,使两路信号进行合成。
观察并绘制不同频率比下的'李萨如图形,分析图形特点与信号频率之间的关系。
4、测量电压和频率
使用示波器测量信号的电压幅值,通过“垂直偏转因数”和波形占用的格数进行计算。
使用周期换算法或李萨如图形法测量信号的频率。
实验结果与分析
1、波形观察
在实验中,我们成功观察到了正弦波、方波等基本波形,并通过调节扫描时间和垂直偏转因数,观察到了波形在时间和幅度上的变化。这些波形清晰、稳定,验证了示波器在信号观测方面的准确性。
2、李萨如图观察
通过向示波器的X轴和Y轴输入不同频率比的正弦波信号,我们观察到了多种李萨如图形。这些图形具有独特的形状和周期性,与输入信号的频率比密切相关。通过测量图形上的切点数,我们可以准确计算出两个信号的频率比。
3、电压和频率测量
使用示波器对信号进行了电压和频率的测量。通过计算波形占用的格数和垂直偏转因数,我们得到了信号的电压幅值;通过周期换算法和李萨如图形法,我们测量了信号的频率,并与信号发生器的读数进行了比较,验证了测量结果的准确性。
实验结论
本次实验通过实际操作,使我们深入了解了示波器的基本结构和工作原理,掌握了示波器的使用方法。通过观察基本波形、李萨如图以及测量电压和频率等实验内容,我们不仅加深了对电子测量技术的理解,还提高了实际操作能力和解决问题的能力。未来,我们将继续深入学习电子测量技术,为未来的科研和工作打下坚实的基础。
示波器实验报告讨论 第4篇
1.用示波器测频率几种方法,各有什么有何有优缺点?
周期法:
优点:周期法适用于任何频率的信号,并且过程比较简单。
缺点:误差较大,因为示波器显示的是波形,只能读出波的周期,通常是毫秒级甚至更小的数量级的,而频率是周期的倒数,这样读出的周期有一点误差计算出频率的误差就会被放大。
李萨如图形法:
优点:可以直观的观察出波形。测量相对准确。
缺点:操作比较费时,同时,它只是适合测量频率较低的信号。
示波器实验报告讨论 第5篇
1.用X轴的时基测量信号的时间和幅值参数1、测量示波器自带方波输出信号的周期(时基分别为 ms/cm, ms/cm,):测示波器校准信号周期连接示波器CH1和示波器校准信号。校准信号为周期1KHz,峰峰值为4V的对称方波信号。调节电平旋钮,使信号稳定。调节示波器聚焦旋钮和辉度旋钮使示波器显示屏中的信号清晰。调节CH1幅度调节旋钮和CH1幅度微调旋钮,校准信号显现为峰峰值为4V。调节示波器时间灵敏度旋钮和扫描微调旋钮,校准信号周期显示为1KHz。
2、选择信号发生器的对称方波接y输入(幅度和y轴量程任选),信号频率为200Hz~2kHz(每隔200Hz测一次),选择示波器合适的时基,测量对应频率的厘米数、周期和频率。打开信号发生开关,打开信号发生器,信号频率为200Hz~2kHz(每隔200Hz测一次),调节信号频率,波形选择对称方波,选择示波器合适的时基,调节时间灵敏度旋钮,使信号满屏,测量对应频率的厘米数、周期和频率。同时把示波器中的方式拨动开关调到CH2档上。
3、选择信号发生器的非对称方波接Y轴,频率分别为200,500,1K,2K,5K,10K,20K,(Hz),测量各频率时的周期和方波的宽度。
4、改变信号发生器输出波形为三角波,频率为500Hz、1kHz、,测量各个频率时的上升时间。下降时间和周期。
2.观察李萨如图形并测量频率
用信号发生器和未知信号源分别接y轴和x轴,信号发生器输出为正弦波,调节信号发生器的频率,示波器中的“x-y”按钮按下,方式调节到CH1(或CH2),触发源选择CH2(或CH1),观察李萨如图像。
示波器实验报告讨论 第6篇
1.示波器都包括几个基本组成部分:
示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。
2.李萨如图形的原理:
如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。
如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。
示波器实验报告讨论 第7篇
一、实验目的
1、了解示波器的基本结构及其工作原理。
2、学习并掌握示波器的基本使用方法,包括观察各种信号波形、测量信号的电压、周期和频率等电参量。
3、通过实际操作,加深对电子测量技术的理解和应用能力。
二、实验器材
1、YB4320G 双踪示波器
2、EE1641B 型函数信号发生器
3、连接线若干
三、实验原理
1. 示波器的基本结构
示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成。其中,示波管是核心部分,主要由电子枪、偏转系统和荧光屏三个部分组成,被外部玻璃外壳密封在真空环境中。
2. 示波器的工作原理
示波器的工作原理基于阴极射线示波管。电子由电子枪发出,经过竖直偏转板组成的偏转系统后,运动方向发生偏转,最终打在涂有荧光粉的荧光屏上,形成光斑。在竖直偏转板上加上一定的电压信号后,再在水平偏转板上加一扫描电压,使光斑沿水平方向拉开,即可在荧光屏上显示竖直偏转板所加的电压波形。此时,X和Y方向上电压的周期应相等。
3. 触发电路
触发电路用于形成触发信号,确保示波器与被测信号同步。内触发方式时,触发信号由被测信号产生,满足同步要求;外触发方式时,触发信号由外部输入信号产生。
四、实验步骤
1、熟悉仪器:首先,熟悉示波器和信号发生器的面板各旋钮的作用,并将各开关置于指定位置。
2、连接电路:将信号发生器输出的信号通过连接线接入示波器的输入端。
3、调整参数:将信号发生器输出的频率为500Hz和1000Hz的`正弦信号接入示波器,通过调整示波器的灵敏度开关和扫描速度选择开关,使波形不超出屏幕范围,并显示2~3个周期的波形。
4、观察波形:观察并记录示波器上显示的波形,注意波形的形状、周期和电压等参数。
5、测量参数:使用示波器测量信号的电压、周期和频率等电参量,并记录数据。
五、实验分析与讨论
1、波形观察:实验中观察到正弦波形清晰、稳定,说明示波器和信号发生器工作正常。通过调整示波器的参数,可以清晰地观察到不同频率下的波形变化。
2、参数测量:使用示波器测量得到的电压、周期和频率等参数与信号发生器设置的值基本一致,验证了示波器的测量准确性。
3、问题思考:
如果y轴信号的频率远大于x轴信号的频率,示波器上会看到横向的圆形或类似图形的增多,因为此时光斑在水平方向上的扫描速度不足以完全显示y轴信号的波形。
相反,如果x轴信号的频率远大于y轴信号的频率,示波器上则可能只显示y轴信号的几个离散点,因为光斑在水平方向上的扫描速度过快,导致y轴信号的波形被压缩。
六、实验结论
通过本次实验,我们深入了解了示波器的基本结构和工作原理,掌握了示波器的基本使用方法,包括观察各种信号波形和测量信号的电压、周期和频率等电参量。同时,通过实际操作,加深了对电子测量技术的理解和应用能力。
示波器实验报告讨论 第8篇
一、引言
示波器是电子测量仪器中的重要工具,广泛应用于电子、通讯、医疗等领域。本次实验旨在掌握示波器的基本使用方法,并通过具体实验验证其在电路分析与干扰发现方面的作用。
二、实验目的
1. 了解示波器的基本结构和工作原理;
2. 掌握示波器的基本操作方法;
3. 通过实验验证示波器在电路分析中的应用;
4. 通过实验验证示波器在干扰发现与分析中的应用。
三、实验仪器与设备
1. 示波器
2. 信号源
3. 电路板
4. 示波器探头
5. 直流电源
四、实验内容与步骤
1. 示波器的基本操作
首先,我们对示波器进行了基本的了解和操作演示。了解了示波器的各种旋钮、按钮的功能,并能够正确使用探头与被测点连接。
2. 示波器在电路分析中的应用
接下来,我们搭建了一个简单的电路,通过示波器观察并记录电压信号的波形变化。通过调节示波器的垂直和水平灵敏度,成功捕获并分析了待测电路中的不同信号波形。
3. 示波器在干扰发现与分析中的应用
另外,我们将示波器连接到一个稳压电源的输出端,同时在其它端加上一个交流电源的干扰源。通过观察示波器显示的信号波形,成功发现了交流电源带来的干扰信号,并进行了相应的分析处理。
五、实验结果与分析
通过本次实验,我们对示波器的基本操作有了全面的了解,并成功应用于电路分析和干扰发现中。在电路分析中,示波器能够清晰地显示出电压信号的波形,帮助我们全面了解待测电路的工作状态;在干扰发现与分析中,示波器能够准确捕捉并显示出干扰信号,为后续的干扰抑制提供了重要信息。
六、实验总结
通过本次实验,我们深入了解了示波器的基本原理和操作方法,并成功应用于电路分析和干扰发现中。同时,也发现了示波器在工程实践中的重要作用,对于电子工程技术人员来说,熟练掌握示波器的使用是非常必要的。
七、参考资料
1. 《电子技术基础》,XXX 著,XXX 出版社。
2. 《示波器操作手册》,XXX 编,XXX 出版社。
八、附录
实验数据表格、示波器使用操作步骤说明等。
以上即是本次示波器的使用实验报告,希望能对各位读者有所帮助。
示波器实验报告讨论 第9篇
一、实验目的
1、理解示波器的基本工作原理:通过实际操作,掌握示波器作为电子测量仪器的基本功能及其内部信号处理的基本原理。
2、学习示波器的使用方法:熟悉示波器的面板布局、各旋钮和按键的功能,掌握如何正确设置示波器以观测和测量电信号的波形、频率、幅值等参数。
3、观察与分析电信号波形:通过示波器观察不同电路产生的电信号波形(如正弦波、方波、三角波等),分析其特点,加深对电子电路特性的理解。
二、实验器材
1、双踪示波器一台
2、信号发生器一台
3、连接线若干
4、待测电路
三、实验原理
示波器是一种能够显示电信号随时间变化的波形图形的电子测量仪器。它主要由示波管、垂直放大系统、水平扫描系统、电源系统以及触发系统等部分组成。示波器通过将被测信号送入垂直放大系统放大后,在示波管的.屏幕上显示出来,同时水平扫描系统提供时间基准,使得波形得以在时间轴上展开。触发系统用于稳定波形显示,确保测量的准确性。
四、实验步骤
1. 示波器预热与校准
接通示波器电源,预热5-10分钟,使仪器达到稳定工作状态。
使用标准信号源(如内置校准信号或外部信号发生器)对示波器进行校准,确保垂直灵敏度、水平扫描速率等参数准确。
2. 信号发生器设置
连接信号发生器与示波器,设置信号发生器输出所需的波形(如正弦波)、频率和幅值。
3. 示波器参数设置
调整示波器的垂直灵敏度(VOLTS/DIV),使波形在屏幕上占据合适的高度。
设置水平扫描速率(TIME/DIV),使波形在屏幕上清晰显示且不过于密集或稀疏。
调整触发模式(如自动触发、单次触发等),确保波形稳定显示。
4. 观测与分析
观察并记录示波器屏幕上显示的波形,包括波形的形状、频率、幅值等参数。
分析波形特点,如正弦波的周期性、方波的占空比等,并与理论值进行对比。
如需,改变信号发生器的参数,观察波形变化,进一步理解电信号的特性。
5. 注意事项
在操作过程中,注意保持仪器和连接线的清洁与干燥,避免短路或损坏。
避免长时间将示波器置于强光直射下,以免影响屏幕显示效果。
实验结束后,及时关闭电源,整理好实验器材。
五、结论
通过本次示波器实验,我深刻理解了示波器作为电子测量仪器的重要性及其基本工作原理。通过实际操作,我掌握了示波器的使用方法,能够熟练设置示波器参数以观测和测量电信号的波形、频率、幅值等参数。同时,通过观察和分析不同电路产生的电信号波形,我加深了对电子电路特性的理解,为后续课程的学习打下了坚实的基础。
示波器实验报告讨论 第10篇
示波器作为电子测量领域的重要工具,能够将人眼无法直接观测的交变电信号转换成图像显示在荧光屏上,极大地便利了电信号的分析与测量。本实验通过实际操作,了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法,学会观测电信号波形、电压副值以及频率,并进一步学习如何通过示波器观察李萨如图并测频率。
实验目的
1.了解示波器的基本机构和工作原理。
2.掌握使用示波器和信号发生器的基本方法。
3.学会使用示波器观测电信号波形、电压副值以及频率。
4.学会使用示波器观察李萨如图并测频率。
实验仪器与设备
1.示波器×1
2.信号发生器×2
3.信号线×2
实验原理
1.示波器的基本组成
示波器主要由示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路和电源等部分组成。示波管是示波器的核心,它将电信号转换为光信号显示在荧光屏上。
2.示波器工作原理
示波器通过控制X轴(水平方向)和Y轴(垂直方向)的偏转板电压,使电子束在荧光屏上描绘出被测信号的波形。当在Y轴偏转板上加正弦电压,同时在X轴偏转板上加锯齿波电压时,电子束在水平和垂直两个方向上同时偏转,形成被测信号的波形图。
3.李萨如图形
如果示波器的X和Y输入是频率相同或成简单整数比的'两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。通过测量图形上的切点数,可以计算出两个正弦信号的频率之比。
实验步骤
1.准备工作
阅读示波器说明书,了解每个旋钮的作用。
接通示波器电源开关,预热一段时间。
调节示波器的亮度和聚焦旋钮,使扫描线清晰。
2.观察波形
向CH1和CH2分别输入两个信号源的正弦波。
将“扫描时间”的“粗调”旋钮置于“X—Y”方式,使两路信号进行合成。
调节示波器,使波形稳定并清晰显示。
3.观察李萨如图形
调节信号发生器的频率,使两个正弦信号的频率之比为简单整数比(如1:1,1:2等)。
观察荧光屏上出现的李萨如图形,并记录其特点。
画出草图,并分析图形的特点与两个信号频率之间的关系。
4.测量频率
设定一个已知频率(如fx=1000Hz)作为基准。
通过观察李萨如图形,计算另一个信号的频率fy。
与信号发生器读数值fy进行比较,求出相对误差。
实验结果与分析
1.实验结果
在实验过程中,我们成功观察到了不同频率比下的李萨如图形,并测量了未知信号的频率。通过计算,我们得到了与信号发生器读数相近的频率值,验证了示波器测量频率的准确性。
2.实验分析
示波器实验报告讨论 第11篇
示波器作为电子测量领域的重要工具,能够将不可见的电信号波形转换成可视化的图像显示在荧光屏上,从而帮助工程师和技术人员更好地观察、分析和测量电子信号的波形、频率、相位等参数。本实验通过实际操作,使学生掌握示波器的基本工作原理和使用方法,理解电信号波形的观测与分析过程,为后续的电子电路实验及科研活动打下坚实基础。
实验目的
1、了解示波器的基本机构和工作原理。
2、掌握使用示波器和信号发生器的基本方法。
3、学会使用示波器观测电信号波形、电压幅值以及频率。
4、通过实际操作,加深对电子信号特性的理解。
实验器材
1、示波器×1
2、信号发生器×2
3、信号线×2
4、其他辅助工具(如螺丝刀、万用表等)
实验原理
示波器主要由示波管、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路和电源等部分组成。其中,示波管是核心部件,包括电子枪、偏转系统和荧光屏三部分,能将电信号转换为光信号显示在荧光屏上。
当被测信号加在Y轴偏转板上时,电子束在垂直方向上产生偏转,形成与被测信号相对应的波形图像;同时,锯齿波信号加在X轴偏转板上,使电子束在水平方向上产生扫描,从而在荧光屏上展开完整的波形图像。
实验步骤
1、实验准备
阅读示波器使用说明书,了解每个旋钮的功能和操作方法。
检查示波器和信号发生器是否正常工作,确保所有连接线和接口无损坏。
预热示波器,一般需开机预热15分钟。
2、示波器基本设置
接通示波器电源,调节亮度、聚焦等旋钮,使扫描线清晰可见。
将示波器设置为“X-Y”模式,以便观察李萨如图形。
调节垂直偏转因数和水平偏转因数,以适应被测信号的幅度和频率范围。
3、信号输入与观测
向CH1、CH2分别输入两个信号源的正弦波。
调整“扫描时间”的“粗调”旋钮,使波形在荧光屏上稳定显示。
观察并记录不同频率比下的李萨如图形,分析其特点与两个信号频率之间的关系。
4、数据处理与分析
设fx=1000Hz为约定真值,通过测量和计算求出另一信号发生器的输出频率fy。
将计算结果与信号发生器读数值进行比较,计算相对误差。
分析误差产生的原因,如仪器系统误差、操作不当等。
实验结果
通过实验,我们成功观测到了不同频率比下的李萨如图形,并计算出了未知信号的频率。实验数据表明,示波器在观测电信号波形和测量频率方面具有较高的准确性和可靠性。
实验总结
本次实验不仅使我们掌握了示波器的基本工作原理和使用方法,还加深了对电子信号特性的`理解。通过实际操作和数据分析,我们验证了示波器在电子测量领域的重要作用。同时,我们也认识到在实验过程中需要注意细节和精度控制,以减小误差并提高实验结果的准确性。
未来,随着电子技术的不断发展,示波器将更加智能化和多功能化。我们期待能够进一步学习和掌握更先进的示波器技术,为电子电路的设计、调试和分析提供更加有力的支持。
示波器实验报告讨论 第12篇
荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。
示波器实验报告讨论 第13篇
本次实验利用示波器测量了示波器自带方波输出信号的周期,并且用时基为测出的数据更准确,因为此时基下只显示了一个周期,在屏幕一定的情况下相当于放大了周期长度,缩小了误差,置信度较大。
减小误差注意事项:(1)在读取数据时一定要认真,尽量减小因人为因素导致的误差并且防止造成读数误差。
(2)观察李萨如图形时,使李萨如图形尽可能稳定后,再测量y轴和x轴的切点数。
心得体会:此次实验是更加接近于一种体验性的实验,通过这次试验,我熟悉了示波器的使用方法,并且体会到了示波器中所表现的将一些不可见的动态量转化为另一种量直观的表现出来的方法。
十、 原始数据:
示波器实验报告讨论 第14篇
示波器的使用
预习思考题
1.示波器的功能是什么?
2.扫描同步如何理解?
3.什么是李萨如图?
1.电子示波器是用来直接显示,观察和测量电压波形机器参数的电子仪器。
2.用每一个触发脉冲产生于同触发电压所对应的触发信号的同相位点,故每次扫描起点会准确地落在同相位点于是每次扫描的起始点会准确地落在同相位点,于是每次扫描出的波形完全重复而稳定地显示被测波的波形。就是触发扫描实现同步的原理。
3.当示波器在Y轴与x轴同时输入正弦信号电压且他们的频率式简单的整数比时荧光屏上出现各式各样的图形这类图形称作_李萨如图_
实验数据记录
实验仪器:
YB4320F双追踪示波器,SG1642函数信号发生器 实验步骤:
1.用示波器观察信号波形
(1)调节扫描旋钮,使示波器的扫描线至长短适当的稳定水平亮线
(2)将信号发生器接到ch1或ch2 输入上,频率选用数百或数千赫兹方式开关及触发源开关的位置与信号输入通道一致的出稳定的波形。
(3)改变输入信号电压的波形,如正弦波,三角波,方波调节扫描微调,以得到2个
(4)可以在调节其他该扫描熟悉示波器
2.用李萨如图测定频率
(1)当示波器在Y轴与x轴同时输入正弦信号电压,且他们的频率式简单的整数比的'的荧光屏上出现各种形式的图形,这类图形称作_李萨如图_
(2)当fg:fx=1:1时输入fg==50hz ,绘出一种李萨如图
(3)当fg:fx=1:2时输入fg==200hz,绘出一种李萨如图
数据处理如上
思考题
1.示波器为接通前,有那些注意事项?
2.波形不稳定时,应调节那个旋钮?
3.为了观察李萨如图,应该怎样设置按钮?
4.欲关闭示波器,首先应把那个旋钮扭到最小?
1.确定是否接地;是否正确连接探头;查看所有的终端额定值;在是使用一个通道的情况下触发源选的通用一致
2.应调节水平微调使之稳定,再调节CH通道
3.首先示波器应该在xY轴输入正弦电压,且加上fg与fx上的频率成整数比
4.将示波器探头脱开测量电路,将输入选择开关,达到接地位置,关机,如果是模拟示波器的话,需要将聚集旋钮和亮度旋钮调低,然后在关闭电源。
示波器实验报告讨论 第15篇
一、实验目的及要求:
(1)了解示波器的基本工作原理。
(2)学习示波器、函数信号发生器的使用方法。
(3)学习用示波器观察信号波形和利用示波器测量信号频率的方法。
二、实验原理:
1)示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。
2)示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。
3)示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。
4)李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的.光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N(x),竖直方向最多可得的交点数为N(y),则x和y方向输入的两正弦波的频率之比为f(x):f(y)=N(y):N(x)。
三、实验仪器:
示波器、函数信号发生器。
四、实验操作的主要步骤:
(一)示波器的使用与调节
1)将各控制旋钮置于相关位置。
2)接通电源,按下面板左下角的“POWER”钮,指示灯亮,稍待片刻,仪器进入正常工作状态。
3)经示波管灯丝预热后,屏上出现绿色亮点,调节INTEN、FOCUS、POSITION,使亮点清晰。
4)将TIME/DIV逐渐旋到2ms或5ms,观察光点由慢变快移动,直至屏上显示一条稳定的水平扫描线,按(3)使线清晰。
(二)实验内容:
1)观察正弦波波长:
a)将AC GND DC转换开关置于AC
b)讲面板右上角的SOURCE置于CH2
c)将函数信号发生器的50Hz信号源直接输入CH2-Y输入端(红插头应接函数发生器输出的红接线柱)
d)屏上显示出正弦波(调V/DIV调节大小,TIME/DIV扫描开关使之出现正弦波,IEVEL使波形稳定)
e)改变扫描电压的频率(TIME/DIV)观察正弦波得变化,使屏上出现多个完整的波形图。
2)观察并描绘李萨如图形,测量正弦信号频率。
利用利萨如图测正弦电压的频率基本原理
通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。此法于1855年由利萨如所证明。将被测正弦信号fx加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比fy/fx是整数时,在荧光屏上将出现利萨如图。
不同频率比的利萨如图形。判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为Nx,竖直线上的切点数最多为Ny,则
fy/fx=Nx/Ny
图1李萨如图与信号频率的关系
图2 fx/fy=1:1时李萨如图与信号相位差的关系
五、数据记录及处理:
用李萨如图测量正弦信号频率
六、实验注意事项:
1.信号发生器、示波器预热3分钟以后才能正常工作。
2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);
3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。
4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。
七、趣味物理实验心得:
一个学期就要过去了,在本学期里,老师又教了很多实验,我做了许多类型的实验,让我受益匪浅,我又学会了很多东西,其中很多知识在平时的学习中都是无法学习到的,其中很多实验都开阔了我们的视野,让我们获得了许多平时课堂上得不到的知识。
通过高中以及大学两个学期的物理实验,我发现实验是物理学的基础,我们学到的许多理论都来源于实验,也学到了许多物理课上没有教到的理论。很多实验都是需要花费许多心思去学习的,也是非常复杂的。经过这一年的大学物理实验课的学习,让我收获多多。想要做好物理实验容不得半点马虎,她培养了我们耐心、信心和恒心。当然,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要比较强的动手能力的时侯我还不能从容应对,实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台让我们去锻炼自己的动手能力。我的学习方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成。伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。唯有实验才是检验理论正确与否的唯一方法。为了要使你的理论被人接受,你必须用事实来证明。
示波器实验报告讨论 第16篇
1.输入通道选择
输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10_位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。
2.输入耦合方式
输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。
示波器实验报告讨论 第17篇
1)示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。
2)示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。
3)示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。
4)李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N(x),竖直方向最多可得的交点数为N(y),则x和y方向输入的两正弦波的频率之比为f(x):f(y)=N(y):N(x)。
示波器实验报告讨论 第18篇
示波器的使用
预习思考题
1.示波器的功能是什么?
2.扫描同步如何理解?
3.什么是李萨如图?
1.电子示波器是用来直接显示,观察和测量电压波形机器参数的电子仪器。
2.用每一个触发脉冲产生于同触发电压所对应的触发信号的同相位点,故每次扫描起点会准确地落在同相位点于是每次扫描的起始点会准确地落在同相位点,于是每次扫描出的波形完全重复而稳定地显示被测波的波形。就是触发扫描实现同步的原理。
3.当示波器在Y轴与X轴同时输入正弦信号电压且他们的频率式简单的整数比时荧光屏上出现各式各样的图形这类图形称作“李萨如图”
实验数据记录
实验仪器:
YB4320F双追踪示波器,SG1642函数信号发生器实验步骤:
1.用示波器观察信号波形
(1)调节扫描旋钮,使示波器的扫描线至长短适当的.稳定水平亮线
(2)将信号发生器接到ch1或ch2输入上,频率选用数百或数千赫兹方式开关及触发源开关的位置与信号输入通道一致的出稳定的波形。
(3)改变输入信号电压的波形,如正弦波,三角波,方波调节扫描微调,以得到2个
(4)可以在调节其他该扫描熟悉示波器2.用李萨如图测定频率
(1)当示波器在Y轴与X轴同时输入正弦信号电压,且他们的频率式简单的整数比的的荧光屏上出现各种形式的图形,这类图形称作“李萨如图”
(2)当fg:fx=1:1时输入fg=,绘出一种李萨如图
(3)当fg:fx=1:2时输入fg=,绘出一种李萨如图
数据处理如上
思考题
1.示波器为接通前,有那些注意事项?
2.波形不稳定时,应调节那个旋钮?
3.为了观察李萨如图,应该怎样设置按钮?
4.欲关闭示波器,首先应把那个旋钮扭到最小?
1、确定是否接地
2、是否正确连接探头
3、查看所有的终端额定值
4、在是使用一个通道的情况下触发源选的通用一致
5、应调节水平微调使之稳定,再调节CH通道
6、首先示波器应该在XY轴输入正弦电压,且加上fg与fx上的频率成整数比
7、将示波器探头脱开测量电路,将输入选择开关,达到接地位置,关机,如果是模拟示波器的话,需要将聚集旋钮和亮度旋钮调低,然后在关闭电源。
示波器的使用实验报告
示波器实验报告讨论 第19篇
示波器作为电子测量领域的重要工具,能够将人眼无法直接观测的交变电信号转换成直观的图像显示在荧光屏上,对于观察、分析和测量电路中的电信号波形、电压、频率等参数具有重要意义。本次实验通过实际操作,掌握示波器的基本工作原理、使用方法及注意事项,进而提升对电子测量技术的理解和应用能力。通过本次实验,我们不仅能够加深对示波器结构的认识,还能学会如何使用示波器观测和测量各种电信号,为后续的电子学习和科研活动打下坚实的基础。
实验目的
1.了解示波器的基本机构和工作原理。
2.掌握使用示波器和信号发生器的基本方法。
3.学会使用示波器观测电信号波形、电压幅值及频率。
4.通过实际操作,加深对示波器在电子测量中应用的理解。
实验仪器与设备
1.示波器×1
2.信号发生器×2
3.信号线×2
4.其他辅助工具(如万用表、连接线等)
实验原理
示波器主要由示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路及电源等部分组成。示波器通过电子束在荧光屏上的偏转来显示电信号的波形。在垂直偏转板上加被测信号电压,在水平偏转板上加锯齿波电压,电子束在荧光屏上描绘出被测信号的波形。通过调节示波器的各个旋钮,可以实现对波形的放大、缩小、移动及稳定显示。
实验步骤
1.实验准备
阅读示波器使用说明书,了解各旋钮的功能和操作方法。
接通示波器电源,预热10-15分钟,确保仪器稳定工作。
检查信号发生器,确保其输出信号稳定可靠。
2.仪器连接
使用信号线将两个信号发生器的`输出端分别连接到示波器的CH1和CH2输入端。
将示波器的扫描时间旋钮置于“AUTO”或“X-Y”模式,以便观察合成波形。
3.信号观测
调节示波器的“亮度”和“聚焦”旋钮,使扫描线清晰显示。
向CH1和CH2输入两个正弦波信号,调整信号频率和幅度,观察示波器上的波形显示。
通过调节示波器的“垂直偏转因数”和“水平偏转因数”旋钮,改变波形在荧光屏上的大小和位置。
4.李萨如图观测
将示波器的扫描时间旋钮置于“X-Y”模式,使两路信号进行合成。
调节信号发生器的频率,使两个正弦波的频率之比满足特定条件(如整数比),观察并绘制出李萨如图形。
分析李萨如图形的特点与两个信号频率之间的关系,验证理论计算结果的正确性。
实验数据与结果
1.当两个正弦波的频率之比为整数比时,荧光屏上呈现出稳定的李萨如图形。
2.通过测量图形上的切点数,计算出两个信号的频率之比,并与理论值进行比较,验证实验结果的准确性。
实验结论
通过本次实验,我们成功地掌握了示波器的基本使用方法,学会了如何观测和测量电信号的波形、电压幅值及频率。同时,我们还通过观测李萨如图形,加深了对示波器在频率测量中应用的理解。实验过程中,我们遇到了仪器调节、信号干扰等问题,但通过不断尝试和调整,最终得到了满意的实验结果。本次实验不仅提高了我们的动手能力和实践能力,还培养了我们分析问题和解决问题的能力。
实验反思
1.在实验过程中,应注意保持实验环境的安静和稳定,避免外界因素对实验结果的影响。
2.在调节示波器旋钮时,应缓慢进行,避免过快的调节导致波形失真或仪器损坏。
3.在观测李萨如图形时,应注意调整信号发生器的频率和相位差,以获得稳定的图形显示。
通过本次实验,我们深刻体会到了示波器在电子测量中的重要性,也更加坚定了我们学好电子技术的信心和决心。
示波器实验报告讨论 第20篇
一、【实验名称】
示波器的使用
二、【实验目的】
1.了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法
2.掌握用示波器观察电信号波形的方法
3.学会使用双踪示波器观察李萨如图形和控制示波管工作的电路
三、【实验原理】
双踪示波器包括两部分,由示波管和控制示波管的控制电路构成
1.示波管 示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两队相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏,高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。在Y偏转板上和X偏转板上分别加上电压,可以在荧光屏上得到相应的图形。
2.双踪示波器的原理
双踪示波器控制电路主要包括:电子开关,垂直放大电路,水平放大电路,扫描发生器,同步电路,电源等;
其中,电子开关使两个待测电压信号YCH1和YCH2周期性的轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形,由于荧光屏荧光物质的余晖及人眼视觉滞留效应,荧光屏上看到的是两个波形。
如果正弦波与锯齿波电压的周期稍不同,屏上呈现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的,为了获得一定数量的完整周期波形,示波器上设有“Time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波性。(看到稳定波形的条件:只有一个信号同步)
当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”;反之则为“外同步”。操作时,使用“电平旋钮”,改变触发电势高度,当待测电压达到触发电平时,开始扫描,直到一个扫描周期结束。但如果触发电势超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。
3.示波器显示波形原理
如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期相等时,则在荧光屏上显示出完整的正弦波形。
4.李萨如图形的基本原理
如果在示波器的Y偏转板上加上正弦波,在X偏转板上加上另一正弦波,则当两正弦波信号的频率比为简单整数比时,在荧光屏上将得到李萨如图形。
四、【仪器用具】:
信号发生器、双踪示波头、探头
五、【实验内容】
几种李萨如图形
nxny分别代表图形在水平或垂直方向的切点数量
nx/ny=1/2 nx/ny=1/3 nx/ny=2/3 nx/ny=3/4
3.观察李萨如图形
a.开通CH2及相应的信号发生器
b.调节该信号发生器的输出频率,直至观察到第二条稳定的正弦波
c.按下“HOR1 MENU”+F5(将CH2信号从γ输入)
d.再次调节频率,使得fx/fy分别等于1:1,1:2,1:3,画下图形
六、【数据处理】
七、【实验结果及分析小结】
示波器使显示电压随时间变化的测试仪器,也就是电压波形,是电子测试中最基础也是最重要的'仪器(以电子枪结构和人脸滞留效应为基础)。利用示波器,可以观测和比较单次过程和非周期现象、低频和慢速信号,以及不同时间不同地点观测到的信号。示波器的原理已应用于生活中的各类显示屏上,极大地影响人类的生活。
在医学方面,示波器主要用于各类影像图形的呈现,如心电图、CT、X光、核磁共振等。学习示波器的使用可以为以后的临床工作增加经验。
八、【误差分析】
1.桌面振动造成的影响。
2.示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。
3.取正弦周期时肉眼调节两荧光线间宽度不准,导致周期测定不准确。
4.在选确定fy的值时上下跳动,可能造成取值不准。
5.机器系统存在系统误差。
九、【思考与讨论】
1.简述示波器显示u-t图形(即电信号波形)的原理。
答:示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏幕上,就可以产生细小的光点。当一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上时,则荧光屏上的光点位置就由两个方向的位移所共同决定。在被测信号的瞬时值的变化曲线,即u-t曲线。
2.怎样用示波器定量地测量交流信号的电压有效值和频率?
答:用光标法。
调节波形上下移动键,使一条水平线对准波谷或波峰,计算峰-峰值,除以二就是振幅,再除以√2()就是有效值。
3.观察两个信号的合成李萨如图形时,应如何操作示波器?
答:a.开通CH2及相应的信号发生器fy
b.调节该信号发生器的输出频率,直至观察到第二条稳定的正弦波
c.按下“HOR1 MENU”+F5(将CH2信号从γ输入)
4.为了使李萨如图形稳定下来,能否使用示波器上的同步旋钮?为什么?
答:不能。因为李萨如图形实际上是一个质点同时在x轴、y轴上振动形成的;同步旋钮是使每次扫描都扫描在同一个起始相位,使一个示波器内只有一个稳定的图形。(例:当你测正弦波时示波器内有多个波形,这时就可以调节同步旋钮)但从李萨如图形的形成原理来看,调节同步旋钮不能使它稳定下来。
5.用示波器观测周期为的正弦电压,若在荧光屏上呈现了3个完整而稳定的正弦波形,扫描电压的周期等于多少毫秒?
答: ×3=,所以周期是.
示波器实验报告讨论 第21篇
一、实验目的
1. 了解示波器的基本结构与工作原理:通过本次实验,掌握示波器的基本组成部分及其功能,理解示波器如何将电信号转换为可视化的波形图像。
2. 学会使用示波器观察信号波形:通过实际操作,学会调整示波器的各项参数,以清晰地显示不同频率、电压的信号波形。
3. 掌握示波器测量电信号电压、周期和频率的方法:利用示波器测量电信号的电压幅值、周期和频率等电参量,并学会如何读取和记录数据。
二、实验器材
示波器:YB4320G 双踪示波器
信号发生器:EE1641B 型函数信号产生器/计数器
连接线:若干
万用表(可选):用于辅助测量电压
三、实验原理
1. 示波器的基本结构
示波器主要由示波管(CRT)、电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统和标准信号源组成。其中,示波管是示波器的核心部件,由电子枪、偏转系统和荧光屏三部分组成。电子枪发射电子束,经过加速和聚焦后,在偏转系统的作用下,在荧光屏上描绘出被测信号的波形。
2. 示波器的工作原理
示波器利用电子束在电场中的偏转特性,将电信号转换为光信号,显示在荧光屏上。当被测信号接入示波器的Y轴输入端时,经过衰减和放大后,加到Y轴偏转板上,使电子束在垂直方向上偏转。同时,示波器内部产生一个锯齿波信号作为扫描电压,加到X轴偏转板上,使电子束在水平方向上匀速扫描。这样,电子束在荧光屏上描绘出的.轨迹就是被测信号的波形。
四、实验步骤
1. 熟悉示波器和信号发生器的面板:了解各旋钮和开关的功能,并将示波器和信号发生器预热一段时间。
2. 设置信号发生器:将信号发生器设置为输出频率为500Hz和1000Hz的正弦波信号。
3. 连接电路:使用连接线将信号发生器的输出端连接到示波器的Y轴输入端,并确保连接牢固。
4. 调整示波器参数:
打开示波器电源,调节亮度旋钮使光点清晰可见。
调节聚焦旋钮,使扫描线聚焦成最清晰状态。
选择合适的垂直偏转因数和水平偏转因数,使波形完整显示在屏幕上。
调节触发方式(内触发或外触发),使波形稳定显示。
5. 观察并记录波形:
观察并记录500Hz和1000Hz正弦波的波形特征,包括电压幅值、周期和频率。
可以尝试改变信号发生器的输出频率和电压,观察波形的变化。
6. 测量电参量:利用示波器上的刻度线和比例常数,测量并记录信号的电压幅值、周期和频率。
五、实验数据与结果
1. 500Hz正弦波
电压幅值:约2V(根据示波器读数)
周期:约2ms(根据示波器读数,计算得频率500Hz)
波形特征:正弦波形清晰,无畸变。
2. 1000Hz正弦波
电压幅值:约2V(与500Hz相同)
周期:约1ms(根据示波器读数,计算得频率1000Hz)
波形特征:正弦波形清晰,频率增加导致波形更密集。
六、实验结论
通过本次实验,我们成功掌握了示波器的基本使用方法和工作原理,能够清晰地观察到不同频率、电压的正弦波信号波形,并学会了如何利用示波器测量电信号的电压幅值、周期和频率等电参量。此外,我们还发现示波器在数字电路实验中的重要性,它是观察和分析电路信号波形不可或缺的工具。
七、讨论与建议
示波器实验报告讨论 第22篇
1.示波器的功能是什么?2.扫描同步如何理解?3.什么是李萨如图?
1.电子示波器是用来直接显示,观察和测量电压波形机器参数的电子仪器。
2.用每一个触发脉冲产生于同触发电压所对应的触发信号的同相位点,故每次扫描起点会准确地落在同相位点于是每次扫描的起始点会准确地落在同相位点,于是每次扫描出的波形完全重复而稳定地显示被测波的波形。就是触发扫描实现同步的原理。
3.当示波器在Y轴与X轴同时输入正弦信号电压且他们的频率式简单的整数比时荧光屏上出现各式各样的图形这类图形称作“李萨如图”
示波器实验报告讨论 第23篇
【实验目的】
1.了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。
2.学会使用示波器观测电信号波形和电压副值以及频率。
3.学会使用示波器观察李萨如图并测频率。
【实验原理】
1.示波器都包括几个基本组成部分:
示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。
2.李萨如图形的原理:
如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。
如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。
【实验仪器】
示波器×1,信号发生器×2,信号线×2。
【实验内容】
1.基础操作:
了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。
明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。
2.观测李萨如图形:
向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“X-Y”方式(即使两路信号进行合成)。调出不同比值的'李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。
设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较,一一求出它们的相对误差。
【误差分析】
1.两台信号发生器不协调。
2.桌面振动造成的影响。
3.示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。
4.取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准。
5.机器系统存在系统误差。
选取时上下跳动,可能取值不准。
示波器实验报告讨论 第24篇
一、实验目的
1. 了解示波器的基本结构和原理:通过本次实验,掌握示波器的基本组成部分及其工作原理。
2. 学会使用示波器观察电信号波形:掌握使用示波器观察各类电信号波形的方法,包括正弦波、方波等。
3. 掌握示波器测量电信号参数的方法:学会用示波器测量电信号的电压、周期和频率等电参量。
二、实验器材
1、示波器:YB4320G 双踪示波器
2、信号发生器:EE1641B 型函数信号产生器/计数器
3、连接线:若干
三、实验原理
1. 示波器的基本结构
示波器主要由示波管(CRT)、电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统和标准信号源组成。示波管是示波器的核心部件,它将电信号转换为光信号,显示在荧光屏上。
2. 示波器的工作原理
示波器利用电子束在电场或磁场中的偏转,将交变电信号转换成图像显示在荧光屏上。电子枪发射电子束,经过加速和聚焦后,在偏转系统的作用下,根据输入信号的变化在荧光屏上描绘出波形。
3. 波形显示原理
正弦波显示:在Y轴偏转板上加正弦电压,X轴偏转板上加锯齿波电压,电子束在水平和垂直方向上进行合成运动,形成正弦波形。
李萨如图形:当两个不同频率的正弦信号分别加到Y轴和X轴偏转板上时,会在荧光屏上形成李萨如图形,用于测量信号的频率比。
四、实验步骤
1. 熟悉示波器和信号发生器的面板:了解各旋钮和开关的作用,并将各开关置于指定位置。
2. 连接信号发生器与示波器:将信号发生器产生的正弦信号接入示波器的Y轴输入端。
3. 调整示波器参数:
设置垂直偏转因数(VOLTS/DIV)和水平偏转因数(TIME/DIV)。
调整触发方式(内触发或外触发),确保波形稳定显示。
4. 观察波形:观察示波器屏幕上显示的'波形,调整灵敏度和扫描速度,使波形清晰且完整。
5. 测量电压和频率:读取波形的高度和周期数,根据示波器的刻度计算电压和频率。
6. 观察李萨如图形:将两个不同频率的正弦信号分别接入Y轴和X轴,观察并测量李萨如图形,计算频率比。
五、实验数据记录与处理
1. 正弦信号电压和频率的测量
电压:根据波形高度和垂直偏转因数计算。
频率:根据波形周期数和水平偏转因数计算。
2. 李萨如图形测量
频率比:根据李萨如图形的形状和公式 `fy:fx = ny:nx` 计算。
六、实验结果与分析
1. 波形观察结果
正弦波形清晰、稳定,无畸变。
李萨如图形形状正确,符合理论预期。
2. 误差分析
读数误差:由于人为读数误差,可能导致电压和频率的测量结果存在偏差。
仪器误差:示波器和信号发生器的精度限制,也会对测量结果产生影响。
3. 改进措施
提高读数精度,多次测量取平均值。
使用更高精度的测量仪器。
七、实验体会
通过本次实验,我深刻理解了示波器的基本结构和工作原理,掌握了使用示波器观察电信号波形和测量电信号参数的方法。同时,我也体会到了实验操作的严谨性和科学性,以及理论知识在实际应用中的重要性。
示波器实验报告讨论 第25篇
1.示波器的基本结构
示波器由示波管(又称阴极射线管)、放大系统、衰减系统、扫描和同步系统及电源等部分组成。其中示波管是示波器的基本构件,它由电子枪、偏转板和荧光屏三部分组成,被封装在高真空的玻璃管内,电子枪是示波管的核心部分,由阴极、栅极和阳极组成。
数字示波器是一种集数据采集、A/D转换、软件编程等一系列技术制造出来的具有测量、分析、处理、存储的高性能示波器,其原理组成框图如下图所示:
输入的电压信号经耦合电路后送至前端放大器,前端放大器将信号放大,提高示波器的灵敏度以及动态范围。输出放大器的信号由取样/保持电路进行取样,并由A/D转换器数字化,经过A/D转换后,信号编程数字形式存入存储器中,微处理器对存储器中数字化信号进行相应的处理,并显示在显示屏上。
2.用x轴时基测时间参数设待测信号接y轴输入端,则Ty是待测信号的周期,Tx是x轴扫描信号的周期,N是一个扫描周期内所显示的待测信号的波形周期个数。x轴扫描信号的周期,实际上是以时基单位(时间/cm或时间/度)来标示的。在实际测量中,采用 T=时基单位x波形厘米数。 式中的波形厘米数,可以是信号一个周期的读数(可测待测信号的周期)、正脉冲(或负脉冲)的信号宽度的读数或待测信号波形的其他参数。3.用李萨如图形测信号的频率如果将不同的信号分别输入y轴和x轴的输入端,当两个信号的频率满足一定关系时,荧光屏上会显示出李萨如图形。将被测正弦信号加到y偏转板,将参考正弦信号加到x偏转板,当两者的频率之比是整数时,在荧光屏上将出现李萨如图。对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上及竖直线上的切点数之比可得两信号的频率之比。
示波器实验报告讨论 第26篇
一、实验目的及要求:
(1)了解示波器的基本工作原理。
(2)学习示波器、函数信号发生器的使用方法。
(3)学习用示波器观察信号波形和利用示波器测量信号频率的方法。
二、 实验原理:
1) 示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。
2) 示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。
3) 示波器显示波形的原理:如果在x轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而x轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在x轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与x轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的.波形。
4) 李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两 个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N(x),竖直方向最多可得的交点数为N(y),则x和y方向输入的两正弦波的频率之比为 f(x):f(y)=N(y):N(x)。
三、 实验仪器:
示波器、函数信号发生器。
四、 实验操作的主要步骤:
(一) 示波器的使用与调节
1) 将各控制旋钮置于相关位置。
2) 接通电源,按下面板左下角的“POWER”钮,指示灯亮,稍待片刻,仪器进入正常工作状 态。
3) 经示波管灯丝预热后,屏上出现绿色亮点,调节INTEN、FOCUS、POSITION,使亮点清晰。
4) 将TIME/DIV逐渐旋到2ms或5ms,观察光点由慢变快移动,直至屏上显示一条稳定的水 平扫描线,按(3)使线清晰。
(二) 实验内容:
1) 观察正弦波波长:
a)将AC GND DC转换开关置于AC
b)讲面板右上角的SOURCE置于CH2
c)将函数信号发生器的50Hz信号源直接输入CH2-Y输入端(红插头应接函数发生器输出的红接线柱)
d)屏上显示出正弦波(调V/DIV调节大小,TIME/DIV扫描开关使之出现正弦波,IEVEL使波形稳定)
e)改变扫描电压的频率(TIME/DIV)观察正弦波得变化,使屏上出现多个完整的波形图。
2) 观察并描绘李萨如图形,测量正弦信号频率。
利用利萨如图测正弦电压的频率基本原理
通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。此法于1855年由利萨如所证明。将被测正弦信号fx加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比fy/fx是整数时,在荧光屏上将出现利萨如图。
不同频率比的利萨如图形。判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为Nx,竖直线上的切点数最多为Ny,则fy/fx=Nx/Ny
五、数据记录及处理:
用李萨如图测量正弦信号频率
六、实验注意事项 :
1.信号发生器、示波器预热3分钟以后才能正常工作。
2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);
3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。
4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。
七、趣味物理实验心得:
一个学期就要过去了,在本学期里,老师又教了很多实验,我做了许多类型的实验,让我受益匪浅,我又学会了很多东西,其中很多知识在平时的学习中都是无法学习到的,其中很多实验都开阔了我们的视野,让我们获得了许多平时课堂上得不到的知识。
通过高中以及大学两个学期的物理实验,我发现实验是物理学的基础,我们学到的许多理论都来源于实验,也学到了许多物理课上没有教到的理论。很多实验都是需要花费许多心思去学习的,也是非常复杂的。经过这一年的大学物理实验课的学习,让我收获多多。想要做好物理实验容不得半点马虎,她培养了我们耐心、信心和恒心。当然,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要比较强的动手能力的时侯我还不能从容应对,实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台让我们去锻炼自己的动手能力。我的学习方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成。伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。唯有实验才是检验理论正确与否的唯一方法。为了要使你的理论被人接受,你必须用事实来证明。
示波器实验报告讨论 第27篇
1.基础操作:
了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。
明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。
2.观测李萨如图形:
向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“X-Y”方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。
设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较,一一求出它们的相对误差。
示波器实验报告讨论 第28篇
第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。
1.触发源(Source)选择
要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。
电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。
外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。
正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。
2.触发耦合(Coupling)方式选择
触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。
AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。
直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。
低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。
3.触发电平(Level)和触发极性(Slope)
触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(HoldOff)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。
极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。
示波器实验报告讨论 第29篇
一、 【实验名称】
超声波声速的测量
二、 【实验目的】
1、了解声速的测量原理
2、学习示波器的原理与使用
3、学习用逐差法处理数据
三、 【仪器用具】
1、SV-DH-3型声速测定仪段(资产编号)
2、双踪示波器(资产编号)
3、SVX-3型声速测定信号源(资产编号)
四、 【仪器用具】
1.超声波与压电陶瓷换能器
频率20Hz-20kHz的机械振动在弹性介质中传播形成声波,高于20kHz称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点,声速实验所采用的声波频率一般都在20~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。
图1纵向换能器的结构简图
压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。声速教学实验中所用的大多数采用纵向换能器。图1为纵向换能器的结构简图。
2.共振干涉法(驻波法)测量声速
假设在无限声场中,仅有一个点声源S1(发射换能器)和一个接收平面(接收换能器S2)。当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。
在上述假设条件下,发射波ξ1=Acos(ωt+2πx /λ)。在S2处产生反射,反射波ξ2=A1cos(ωt+2πx /λ),信号相位与ξ1相反,幅度A1<A。ξ1与ξ2在反射平面相交叠加,3合成波束ξξ3=ξ1+ξ2=(A1+A2)cos(ωt-2πx /λ)+A1cos(ωt+2πx /λ) =A1cos(2πx /λ)cosωt+A2cos(ωt - 2πx /λ)
由此可见,合成后的波束ξ3在幅度上,具有随cos(2πx /λ)呈周期变化的特性,在相位上,具有随(2πx /λ)呈周期变化的特性。
图4所示波形显示了叠加后的声波幅度,随距离按cos(2πx /λ)变化的特征。
发射换能器与接收换能器之间的距离
图2换能器间距与合成幅度
实验装置按图7所示,图中S1和S2为压电陶瓷换能器。S1作为声波发射器,它由信号源供给频率为数十千赫的交流电信号,由逆压电效应发出一平面超声波;而S2则作为声波的接收器,压电效应将接收到的声压转换成电信号。将它输入示波器,我们就可看到一组由声压信号产生的正弦波形。由于S2在接收声波的同时还能反射一部分超声波,接收的声波、发射的声波振幅虽有差异,但二者周期相同且在同一线上沿相反方向传播,二者在S1和S2区域内产生了波的干涉,形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器S2处的振动情况。移动S2位置(即改变S1和S2
之间的距离),你从示
波器显示上会发现,当S2在某此位置时振幅有最小值。根据波的干涉理论可以知道:任何二相邻的振幅最大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为λ/ 2。为了测量声波的波长,可以在一边观察示波器上声压振幅值的同时,缓慢的改变S1和S2之间的.距离。示波器上就可以看到声振动幅值不断地由最大变到最小再变到最大,二相邻的振幅最大之间的距离为λ/2;S2移动过的距离亦为λ/2。超声换能器S2至S1之间的距离的改变可通过转动鼓轮
来实现,而超声波的频率又可由声速测试仪信号源频率显示窗口直接读出。
图3用李萨如图观察相位变化
在连续多次测量相隔半波长的S2的位置变化及声波频率f以后,我们可运用测量数据计算出声速,用逐差法处理测量的数据。
3.相位法测量原理
由前述可知入射波ξ1与反射波ξ2叠加,形成波束ξ3即ξ3 =A1cos(2πx /λ)cosωt+A2cos(ωt - 2πx /λ)即对于波束:ξ1 =Acos(ωt - 2πx /λ)
由此可见,在经过△x距离后,接收到的余弦波与原来位置处的相位差(相移)为θ= 2π △x /λ。如图5所示。因此能通过示波器,用李萨如图法观察测出声波的波长。
4.时差法测量原理
连续波经脉冲调制后由发射换能器发射至被测介质中,声波在介质中传播,经过t时
间后,到达L距离处的接收换能器。由运动定律可知,声波在介质中传播的速度可由以下公式求出:
速度V=距离L/时间t
图4发射波与接收波
通过测量二换能器发射接收平面之间距离L和时间t ,就可以计算出当前介质下的声波传播速度。五、【实验内容】
1.仪器在使用之前,加电开机预热15min。在接通市电后,自动工作在连续波方式,选择的介质为空气的初始状态。
2.驻波法测量声速。 测量装置的连接:
图5驻波法、相位法连线图
如图5所示,信号源面板上的发射端换能器接口(S1),用于输出一定频率的功率信号,请接至测试架的发射换能器(S1);信号源面板上的发射端的发射波形Y1,请接至双踪示波器的CH1(Y1),用于观察发射波形;接收换能器(S2)的输出接至示波器的CH2(Y2)
测定压电陶瓷换能器的最佳工作点
只有当换能器S1的发射面和S2的接收面保持平行时才有较好的接收效果;为了得到较清晰的接收波形,应将外加的驱动信号频率调节到换能器S1、S2的谐振频率点处时,才能较好的进行声能与电能的相互转换(实际上有一个小的通频带),以得到较好的实验效果。按照调节到压电陶瓷换能器谐振点处的信号频率,估计一下示波器的扫描时基t/div,并进行调节,使在示波器上获得稳定波形。
超声换能器工作状态的调节方法如下:各仪器都正常工作以后,首先调节发射强度旋钮,使声速测试仪信号源输出合适的电压(8~10VP-P之间),再调整信号频率(在25~45kHz),选择合适的示波器通道增益(一般~1V/div之间的位置),观察频率调整时接收波的电压幅度变化,在某一频率点处(~之间)电压幅度最大,此频率即是压电换能器S1、S2相匹配频率点,记录频率FN,改变S1和S2间的距离,适当选择位置,重新调整,再次测定工作频率,共测5次,取平均频率f。
测量步骤
将测试方法设置到连续波方式,合适选择相应得测试介质。完成前述、步骤后,观察示波器,找到接收波形的最大值。然后转动距离调节鼓轮,这时波形的幅度会发生变化,记录下幅度为最大时的距离Li-1,距离由数显尺(数显尺原理说明见附录2)或在机械刻度上读出,再向前或者向后(必须是一个方向)移动距离,当接收波经变小后再到最大时,记录下此时的距离Li。即有:波长λi=2│Li -Li-1│,多次测定用逐差法处理数据。
3.相位法/李萨如图法测量波长的步骤
将测试方法设置到连续波方式,合适选择相应的测试介质。完成前述、步骤后,将示波器打到“X-Y”方式,并选择合适的通道增益。转动距离调节鼓轮,观察波形为一定角度的斜线,记录下此时的距离Li-1;距离由数显尺(数显尺原理说明见附录2)或机械刻度尺上读出,再向前或者向后(必须是一个方向)移动距离,使观察到的波形又回到前面所说的特定角度的斜线,记录下此时的距离Li。即有:波长λi=│Li -Li-1│
用共振干涉法测量声波的波长的实验装置如图所示。
图中S1和S2为压电超声换能器。信号发生器输出的正弦交流信号加到S1上,由S1完成电声转换,作为声源,发出波前近似为平面的声波;S2作为超声波接收换能器,将接收到的声信号转换成电信号,然后接入示波器观察。S2在接收声波的同时,其表面还反射一部分声波。当S1与S2的表面互相平行时,往返于S1与S2之间的声波发生干涉而形成驻波。
依波动理论,设沿X方向射出的入射波方程为
y1=Acos(ωt-2πλx)
反射波方程为
y2=Acos(ωt+2πλx)
式中,A为声源振幅;ω为角频率;2πxλ为由于波动传播到坐标x处(t时刻)引起的位相变化。
在任意时刻t,空气中某一位置处的合振动方程为
y=y1+y2=(2Acos2πλx)cosωt
上式即为驻波方程。
当cos2πλx=1,即2πλx=kπ时,在x=k·λ2 (k=0,1,2?)处,合成振动振幅最大,称为波腹或声振幅的极大值。
当cos2πλx=0,即2πλx=(2k+1)π2时,在x=(2k+1)·λ4 (k=0,1,2?)处,合成振动振幅最小,称为波节或声振幅的极小值。
改变两换能器之间的距离,当二者之间的距离是半波长的整数倍时,在发射换能器和接收换能器处,声波的幅度(声压)都达到极大值,此时称为“共振”。在相邻极大值之间,两换能器间的距离变化量为λ/2。由波腹(或波节)条件可知,相邻两个波腹(或波节)间的距离为λ2,当S1和S2间的距离L恰好等于半波长(5)