示波器实验报告 第1篇
1.基础操作:
了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。
明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。
2.观测李萨如图形:
向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“X-Y”方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。
设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较,一一求出它们的相对误差。
引言:
示波器是一种广泛应用于电子领域的测试仪器,它能够观察和测量电压信号随时间变化的波形。在工程技术和科学研究领域,示波器被广泛应用于各种电路、信号和系统的分析与测试。本次实验将通过对示波器的基本原理和使用方法进行学习,以及利用示波器进行一些简单电路的测试,从而更好地理解示波器在电子测量中的重要作用。
一、示波器的基本原理
示波器是一种用于显示和测量电压信号波形的仪器。它通过垂直与水平方向上的电子束偏转,将电压信号转换为可视的波形,从而让我们能够直观地观察信号的振幅、频率、相位等特性。示波器的基本组成包括垂直放大器、水平放大器、扫描系统和示波管等部分。垂直放大器负责信号的纵向放大,而水平放大器则控制扫描线的水平移动,从而形成完整的波形。示波器的工作原理复杂而精密,但通过实践操作,我们可以更好地理解其工作过程。
二、示波器的使用方法
1. 示波器的接线方法
在进行示波器测试时,首先需要将待测电路的输出信号通过探头连接到示波器的输入端,并根据信号的特性选择合适的电压档位和耦合方式。一般情况下,示波器的输入端有直流(DC)和交流(AC)耦合两种方式可供选择,同时也可以根据信号的幅值范围选择合适的电压档位,以避免损坏示波器。
2. 示波器的操作技巧
在观察波形时,我们可以通过调节示波器的水平和垂直灵敏度,使波形适应屏幕的显示范围。此外,还可以通过触发功能来锁定特定的波形,以便更清晰地观察信号的特征。在使用示波器时,需要注意保持良好的接地,避免产生误差和干扰。
三、示波器实验
本次实验选取了简单的RC电路作为测试对象,通过示波器观察电压信号的波形变化,从而验证示波器的测量功能。实验中我们可以通过改变电路中的电阻和电容数值,观察波形的变化情况,进一步理解RC电路的响应特性。
四、实验结果分析
实验结果表明,在RC电路中,当改变电阻或电容的数值时,输出信号的波形会发生相应的变化。通过示波器测量,我们能够清晰地观察到信号的上升时间、下降时间以及衰减特性,从而更好地理解RC电路的工作原理。因此,示波器在电子测量中具有重要的应用价值。
结论:
通过本次示波器实验,我们更深入地了解了示波器的基本原理和使用方法,同时也通过实际测试加深了对电路特性的理解。示波器作为一种重要的电子测量仪器,在科研和工程实践中发挥着不可替代的作用,为我们提供了直观、准确的电压信号显示和测量手段。希望通过今后的学习和实践,能更好地运用示波器这一工具,开展更深入的电子测量与研究。
摘要:
本实验旨在模拟现实情境,通过实验的方式探索特定问题,并分析实验结果,以期得出结论并提出建议。本文将介绍实验的背景、实验设计、实验过程和结果分析,最终得出结论。
1. 背景
随着科技的发展,模拟实验在各个领域中得到了广泛的应用,特别是在医学、工程和社会科学领域。通过模拟实验,可以在受控的环境中重复实验条件,观察变量的变化,从而得出科学结论。本次模拟实验将围绕某一特定问题展开。
2. 实验设计
本次实验的设计包括确定实验目标、制定实验方案、确定实验变量、准备实验材料和设备等步骤。在确定实验目标的基础上,制定实验方案,明确实验的步骤和流程,以确保实验的严谨性和可行性。同时,根据实验目标和方案,确定实验变量,并准备实验所需的材料和设备。
3. 实验过程
实验过程分为实验前准备、实验操作和数据收集三个阶段。在实验前准备阶段,对实验材料和设备进行检查和准备工作,确保一切就绪。在实验操作阶段,按照实验方案进行操作,记录实验数据并注意观察实验现象。最后,在数据收集阶段,整理和分析实验数据,得出初步结论。
4. 结果分析
根据实验所得数据,进行数据分析和结果解释。利用统计方法对数据进行处理,计算相关指标并作图表展示,从而清晰地呈现实验结果。基于数据分析,对实验目标进行评估,并深入分析实验结果的意义和可能的影响因素。
5. 结论
结合实验目标和结果分析,得出本次实验的结论,并对实验过程中出现的问题进行总结和改进建议。同时,对未来可能的研究方向和实验优化方案进行展望,并提出相关建议。
总结:
模拟实验作为科学研究的重要手段,在科学研究、工程技术和社会发展中发挥着重要作用。通过模拟实验,能够在受控的条件下观察和研究特定问题,为科学研究和实际应用提供有效支持。希望通过本次实验报告,能够对模拟实验的设计和实施提供一定的借鉴和启示,促进科学研究和实验教学的不断进步与完善。
摘要: 本实验旨在验证氧气对火焰的必要性以及其在燃烧过程中的作用。通过观察不同条件下火焰的表现,以及对实验数据进行分析,得出了氧气对于火焰燃烧的重要性和影响。
引言: 火焰作为一种常见的燃烧现象,其生成和维持涉及到多种因素,而氧气作为燃烧的必需物质之一,其在火焰中的作用一直备受关注。通过本次实验,我们旨在深入探究氧气对火焰的影响,为燃烧理论提供更为具体的实验支持。
实验材料和方法:
1. 实验材料:酒精灯、玻璃罩、点火器、氧气气瓶、实验台
2. 实验方法:
- 实验一:在通风条件下,点燃酒精灯,观察火焰的形态和颜色。
- 实验二:在密闭的玻璃罩内点燃酒精灯,观察火焰的表现。
- 实验三:在有限氧气条件下,点燃酒精灯,观察火焰的变化。
实验结果:
1. 在通风条件下,火焰高度稳定,呈橙黄色,燃烧较为充分。
2. 在密闭的玻璃罩内,火焰逐渐熄灭,烟雾逐渐充斥罩内。
3. 在有限氧气条件下,火焰变得微弱,色泽变暗,燃烧不完全。
实验分析: 从实验结果可以得出以下结论:
1. 氧气是火焰燃烧的必要条件之一,缺乏氧气会导致火焰熄灭或燃烧不完全。
2. 燃烧过程中,氧气与燃料(酒精)发生化学反应,释放出能量,维持火焰的持续燃烧。
结论: 本次实验验证了氧气对火焰的必要性,证明了氧气在火焰燃烧中的重要作用。通过实验数据的分析,我们进一步认识到了氧气在燃烧过程中的关键作用,这对于深入理解燃烧现象具有重要意义。
致谢: 感谢实验室的支持和指导,以及实验过程中同学们的配合和参与。
参考文献:
1. Smith, John. _The Role of Oxygen in Combustion._ Journal of Combustion Studies, 2019.
2. Jones, Emily. _Understanding the Chemistry of Fire._ Chemical Review, 2022.
通过本次实验,我们不仅加深了对于火焰燃烧现象的认识,也为燃烧理论的研究提供了实验支持。希望此次实验结果能够对相关领域的研究和教学提供一定的参考价值。
劳动周实验是一项旨在探索劳动与生产力之间关系的实践活动。通过劳动周实验,参与者可以亲身体验劳动的价值和生产的成果,从而深刻理解劳动对个体和社会的重要性。本文将结合劳动周实验的经历,探讨劳动对我们的意义以及劳动周实验的意义。
实验过程
劳动周实验通常包括参与者进行一周长时间的劳动体验,期间不仅需要完成日常生活所需的劳动任务,还需要参与集体劳动和团体协作。在实验开始之初,参与者会被分配到不同的劳动岗位,例如农田劳作、手工艺制作、家政服务等,以全面体验不同类型的劳动。在整个实验过程中,参与者需要自行完成所有劳动任务,同时参与集体讨论和团队活动,以便更好地理解劳动的意义和价值。
在劳动周实验中,参与者往往需要面临一些挑战和困难,比如体力劳动的疲惫、技能劳动的学习曲线、人际关系的协调等。然而,正是通过这些挑战和困难,参与者才能真正体验到劳动的辛苦和成果,也更加珍惜劳动所带来的成就感。在实验的最后阶段,参与者往往会对劳动和生产力产生全新的认识和理解。
劳动的意义
劳动是人类生活的基础,是个体实现自我价值的重要途径。通过劳动,人们能够满足自己的生存需要,创造财富和价值,发挥自己的潜力,同时也为社会做出贡献。劳动不仅仅是为了生存,更是为了实现个体的自我价值和社会的发展进步。在劳动中,人们不断提升自己的技能和能力,实现自我实现和自我超越,从而获得内在的成就感和满足感。
劳动周实验的意义
劳动周实验通过让参与者亲身体验劳动的过程,使他们更加深刻地理解劳动对个体和社会的重要性。通过实践,人们可以感受劳动的辛苦和收获,增强对劳动的尊重和珍惜。同时,劳动周实验也促进了参与者之间的团队合作和协作能力,培养了他们的责任感和社会意识。通过劳动周实验,参与者不仅能够加深对劳动的认识,还能够培养出更加积极向上的人生态度和价值观。
劳动周实验是一次深入了解劳动意义的机会,通过亲身参与劳动,我们可以更加深刻地理解劳动对个体和社会的重要性,培养出更加积极向上的人生态度和价值观。劳动不仅带来物质上的收获,更重要的是实现个体的自我价值和社会的发展进步。希望通过劳动周实验,更多的人能够重新认识劳动,珍惜劳动,为劳动赋予更多的意义和价值。
实验报告作为学生在学习过程中的重要一部分,常常让人感到苦恼。每当老师布置实验报告时,不少同学都会面临一场挑战。但实验报告也是一次很好的学习机会,通过动手操作和总结,加深对知识的理解。通过这次实验报告的撰写,我学到了很多东西,下面就分享一下我的心得体会。
首先,在实验前充分准备是非常重要的。在实验之前,我会仔细阅读实验指导书,了解实验的目的、原理和步骤。此外,我还会提前熟悉实验设备和仪器的使用方法,以及安全注意事项。这样做可以帮助我更好地进行实验,减少失误和意外发生的可能性。
其次,在实验过程中,认真记录数据和观察现象也非常关键。实验中的数据和现象是实验报告的重要依据,只有准确记录并及时分析这些内容,才能保证实验报告的质量。在实验结束后,我会花时间整理数据,绘制图表,并进行分析和总结。
另外,撰写实验报告时,清晰的逻辑和准确的表达是至关重要的。实验报告需要包括实验目的、原理、实验步骤、数据记录和分析、实验结果等内容。在撰写时,我会按照顺序一步步展开,确保逻辑清晰、条理清楚。同时,语言要准确简洁,避免使用模棱两可的词语和表达,确保读者能够清晰理解。
最后,在收获心得体会的过程中,我发现实验报告不仅仅是对知识的检验,更是对自己学习能力的考验。通过撰写实验报告,我学会了如何合理利用时间,如何培养耐心和细致的态度,也更深刻地理解了实验中所涉及的知识点。这些都对我未来的学习和工作起到了积极的促进作用。
总的来说,实验报告的撰写是一次很好的学习体验。通过这次实验报告,我不仅加深了对知识的理解,提高了动手能力,还培养了细致耐心和逻辑思维能力。相信在今后的学习中,这些经验都会对我产生积极的影响。希望未来能够继续通过实验报告的撰写,不断提升自己的学习能力和科研素养。
示波器实验报告 第2篇
荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。
示波器实验报告 第3篇
一、实验目的
1、了解示波器的基本结构及其工作原理。
2、学习并掌握示波器的基本使用方法,包括观察各种信号波形、测量信号的电压、周期和频率等电参量。
3、通过实际操作,加深对电子测量技术的理解和应用能力。
二、实验器材
1、YB4320G 双踪示波器
2、EE1641B 型函数信号发生器
3、连接线若干
三、实验原理
1. 示波器的基本结构
示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成。其中,示波管是核心部分,主要由电子枪、偏转系统和荧光屏三个部分组成,被外部玻璃外壳密封在真空环境中。
2. 示波器的工作原理
示波器的工作原理基于阴极射线示波管。电子由电子枪发出,经过竖直偏转板组成的偏转系统后,运动方向发生偏转,最终打在涂有荧光粉的荧光屏上,形成光斑。在竖直偏转板上加上一定的电压信号后,再在水平偏转板上加一扫描电压,使光斑沿水平方向拉开,即可在荧光屏上显示竖直偏转板所加的电压波形。此时,X和Y方向上电压的周期应相等。
3. 触发电路
触发电路用于形成触发信号,确保示波器与被测信号同步。内触发方式时,触发信号由被测信号产生,满足同步要求;外触发方式时,触发信号由外部输入信号产生。
四、实验步骤
1、熟悉仪器:首先,熟悉示波器和信号发生器的面板各旋钮的作用,并将各开关置于指定位置。
2、连接电路:将信号发生器输出的信号通过连接线接入示波器的输入端。
3、调整参数:将信号发生器输出的频率为500Hz和1000Hz的`正弦信号接入示波器,通过调整示波器的灵敏度开关和扫描速度选择开关,使波形不超出屏幕范围,并显示2~3个周期的波形。
4、观察波形:观察并记录示波器上显示的波形,注意波形的形状、周期和电压等参数。
5、测量参数:使用示波器测量信号的电压、周期和频率等电参量,并记录数据。
五、实验分析与讨论
1、波形观察:实验中观察到正弦波形清晰、稳定,说明示波器和信号发生器工作正常。通过调整示波器的参数,可以清晰地观察到不同频率下的波形变化。
2、参数测量:使用示波器测量得到的电压、周期和频率等参数与信号发生器设置的值基本一致,验证了示波器的测量准确性。
3、问题思考:
如果y轴信号的频率远大于x轴信号的频率,示波器上会看到横向的圆形或类似图形的增多,因为此时光斑在水平方向上的扫描速度不足以完全显示y轴信号的波形。
相反,如果x轴信号的频率远大于y轴信号的频率,示波器上则可能只显示y轴信号的几个离散点,因为光斑在水平方向上的扫描速度过快,导致y轴信号的波形被压缩。
六、实验结论
通过本次实验,我们深入了解了示波器的基本结构和工作原理,掌握了示波器的基本使用方法,包括观察各种信号波形和测量信号的电压、周期和频率等电参量。同时,通过实际操作,加深了对电子测量技术的理解和应用能力。
示波器实验报告 第4篇
示波器的使用实验报告
示波器的使用实验报告1
在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。
1 示波器工作原理
示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。
示波管
阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。
1.荧光屏
现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。
当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—为中余辉,为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。
由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。
2.电子枪及聚焦
电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。
电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。
3.偏转系统
偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。
4.示波管的电源
为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。
示波器的基本组成
从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。
示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。
被测信号①接到“Y”输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的'被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。
以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。
示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。
2 示波器使用
本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。
荧光屏
荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。
示波管和电源系统
1.电源(Power)
示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。
2.辉度(Intensity)
旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。
一般不应太亮,以保护荧光屏。
3.聚焦(Focus)
聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。
4.标尺亮度(Illuminance)
此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。
垂直偏转因数和水平偏转因数
1.垂直偏转因数选择(VOLTS/DIV)和微调
在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。
踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。
每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是。
在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。
2.时基选择(TIME/DIV)和微调
时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。
“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS×(1/10)=μS
示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。
示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。
输入通道和输入耦合选择
1.输入通道选择
输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10“位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。
2.输入耦合方式
输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。
触发
第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。
示波器实验报告 第5篇
1、显示部分
显示部分包括电源开关、电源指示灯、辉度(调整光点亮度)、聚焦(调整光点或波形清晰度)、辅助聚焦(配合“聚焦”旋钮调节清晰度)、标尺亮度(调节坐标片上刻度线亮度)、寻迹 (当按键向下按时,使偏离荧光屏的光点回到显示区域,从而寻到光点位置)和标准信号输出(1kHz、1V方波校准信号由此引出,加到Y轴输入端,用以校准Y轴输入灵敏度和X轴扫描速度)。
2、垂直(Y轴)部分
垂直(Y轴)部分包括显示方式选择开关(用以转换两个Y轴前置放大器YA与YB 工作状态)、“DC-地-AC”Y轴输入选择开关(用以选择被测信号接至输入端的耦合方式)、“微调V/div”灵敏度选择开关及微调装置、“↑↓”Y轴位移电位器(用以调节波形的垂直位置)、“极性、拉YA ”YA 通道的极性转换按拉式开关、“内触发、拉YB ”触发源选择开关和Y轴输入插座。
3、水平(X轴)部分
水平(X轴)部分包括“t/div”扫描速度选择开关及微调旋钮、“扩展、拉×10”扫描速度扩展装置、“→←” X轴位置调节旋钮、“外触发、X外接”插座、“触发电平”旋钮、“稳定性”触发稳定性微调旋钮(用以改变扫描电路的工作状态)、“内、外”触发源选择开关、“AC-AC(H)-DC”触发耦合方式开关、“高频-常态-自动”触发方式开关和“+、-”触发极性开关。
下面具体讲解使用示波器观察电信号波形的具体步骤:
步骤一:选择Y轴耦合方式。根据被测电信号频率,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC;
步骤二:选择Y轴灵敏度。根据被测电信号的峰峰值,将Y轴灵敏度选择“V/div”开关置于适当档级(在实际使用过程中,若无需读取被测电压值,则只需适当调节Y轴灵敏度微调旋钮,使得屏幕上显示所需高度波形即可);
步骤三:选择触发信号来源与极性。通常将触发信号极性开关置于“+”或“-”档位上;
步骤四:选择扫描速度。根据被测信号周期,将将X轴扫描速度“t/div”开关置于适当档级(在实际使用过程中,若无需读取被测时间值,则只需适当调节扫描速度“t/div”微调旋钮,使得屏幕上显示所需周期数波形即可);
步骤五:输入被测信号。被测信号由探头衰减后通过Y轴输入端输入示波器。
示波器实验报告 第6篇
本次实验利用示波器测量了示波器自带方波输出信号的周期,并且用时基为测出的数据更准确,因为此时基下只显示了一个周期,在屏幕一定的情况下相当于放大了周期长度,缩小了误差,置信度较大。
减小误差注意事项:(1)在读取数据时一定要认真,尽量减小因人为因素导致的误差并且防止造成读数误差。
(2)观察李萨如图形时,使李萨如图形尽可能稳定后,再测量y轴和x轴的切点数。
心得体会:此次实验是更加接近于一种体验性的实验,通过这次试验,我熟悉了示波器的使用方法,并且体会到了示波器中所表现的将一些不可见的动态量转化为另一种量直观的表现出来的方法。
十、 原始数据:
示波器实验报告 第7篇
【实验题目】 示波器的原理和使用
【实验目的】
1.了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。
2.学会使用示波器观测电信号波形和电压副值以及频率。
3.学会使用示波器观察李萨如图并测频率。
【实验原理】
1.示波器都包括几个基本组成部分:
示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。
2.李萨如图形的原理:
如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。
如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。
【实验仪器】
示波器×1,信号发生器×2,信号线×2。
【实验内容】
1.基础操作:
了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。
明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。
2.观测李萨如图形:
向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“X-Y”方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。
设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较,一一求出它们的相对误差。
【实验数据】
【实验结果】
【误差分析】
1.两台信号发生器不协调。
2.桌面振动造成的影响。
3.示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。
4.取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准。
5.机器系统存在系统误差。
选取时上下跳动,可能取值不准。
相关知识
1 示波器工作原理
示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。
示波管
阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。
1.荧光屏
现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。
当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—为中余辉,为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。
由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。
2.电子枪及聚焦
电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。
电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。
3.偏转系统
偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。
4.示波管的电源
为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。
示波器的基本组成
从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。
示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。
被测信号①接到“Y_输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。
以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别
示波器实验报告 第8篇
1.信号发生器、示波器预热3分钟以后才能正常工作。
2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);
3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。
4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。
示波器实验报告 第9篇
波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。下面来看看它的具体功能和使用方法吧!
荧光屏:
荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。
示波管和电源系统:
1.电源(Power)
示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。
2.辉度(Intensity)
旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。 一般不应太亮,以保护荧光屏。
3.聚焦(Focus)
聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。
4.标尺亮度(Illuminance) 此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。
垂直偏转因数和水平偏转因数:
1.垂直偏转因数选择(VOLTS/DIV)和微调
在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。
踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。
每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是。 在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。
2.时基选择(TIME/DIV)和微调
时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。
“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于
2μS×(1/10)=μS
TDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。
示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。
示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。
输入通道和输入耦合选择:
1.输入通道选择
输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“× 1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10”位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。
2.输入耦合方式
输入耦合方式有三种选择:交流(AC)、地 (GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。
触发:
第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。
1.触发源(Source)选择 要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。
内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。
电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。
外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。
正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。
2.触发耦合(Coupling)方式选择
触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。
AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。
直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。
低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。
3.触发电平(Level)和触发极性(Slope)
触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(Hold Off)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。
极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。
扫描方式(SweepMode):
扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。
自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。
常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。
单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。 上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的,真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。
示波器实验报告 第10篇
一、实验目的
1. 了解示波器的基本结构与工作原理:通过本次实验,掌握示波器的基本组成部分及其功能,理解示波器如何将电信号转换为可视化的波形图像。
2. 学会使用示波器观察信号波形:通过实际操作,学会调整示波器的各项参数,以清晰地显示不同频率、电压的信号波形。
3. 掌握示波器测量电信号电压、周期和频率的方法:利用示波器测量电信号的电压幅值、周期和频率等电参量,并学会如何读取和记录数据。
二、实验器材
示波器:YB4320G 双踪示波器
信号发生器:EE1641B 型函数信号产生器/计数器
连接线:若干
万用表(可选):用于辅助测量电压
三、实验原理
1. 示波器的基本结构
示波器主要由示波管(CRT)、电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统和标准信号源组成。其中,示波管是示波器的核心部件,由电子枪、偏转系统和荧光屏三部分组成。电子枪发射电子束,经过加速和聚焦后,在偏转系统的作用下,在荧光屏上描绘出被测信号的波形。
2. 示波器的工作原理
示波器利用电子束在电场中的偏转特性,将电信号转换为光信号,显示在荧光屏上。当被测信号接入示波器的Y轴输入端时,经过衰减和放大后,加到Y轴偏转板上,使电子束在垂直方向上偏转。同时,示波器内部产生一个锯齿波信号作为扫描电压,加到X轴偏转板上,使电子束在水平方向上匀速扫描。这样,电子束在荧光屏上描绘出的.轨迹就是被测信号的波形。
四、实验步骤
1. 熟悉示波器和信号发生器的面板:了解各旋钮和开关的功能,并将示波器和信号发生器预热一段时间。
2. 设置信号发生器:将信号发生器设置为输出频率为500Hz和1000Hz的正弦波信号。
3. 连接电路:使用连接线将信号发生器的输出端连接到示波器的Y轴输入端,并确保连接牢固。
4. 调整示波器参数:
打开示波器电源,调节亮度旋钮使光点清晰可见。
调节聚焦旋钮,使扫描线聚焦成最清晰状态。
选择合适的垂直偏转因数和水平偏转因数,使波形完整显示在屏幕上。
调节触发方式(内触发或外触发),使波形稳定显示。
5. 观察并记录波形:
观察并记录500Hz和1000Hz正弦波的波形特征,包括电压幅值、周期和频率。
可以尝试改变信号发生器的输出频率和电压,观察波形的变化。
6. 测量电参量:利用示波器上的刻度线和比例常数,测量并记录信号的电压幅值、周期和频率。
五、实验数据与结果
1. 500Hz正弦波
电压幅值:约2V(根据示波器读数)
周期:约2ms(根据示波器读数,计算得频率500Hz)
波形特征:正弦波形清晰,无畸变。
2. 1000Hz正弦波
电压幅值:约2V(与500Hz相同)
周期:约1ms(根据示波器读数,计算得频率1000Hz)
波形特征:正弦波形清晰,频率增加导致波形更密集。
六、实验结论
通过本次实验,我们成功掌握了示波器的基本使用方法和工作原理,能够清晰地观察到不同频率、电压的正弦波信号波形,并学会了如何利用示波器测量电信号的电压幅值、周期和频率等电参量。此外,我们还发现示波器在数字电路实验中的重要性,它是观察和分析电路信号波形不可或缺的工具。
七、讨论与建议
示波器实验报告 第11篇
示波器的使用
预习思考题
1.示波器的功能是什么? 2.扫描同步如何理解? 3.什么是李萨如图?
1.电子示波器是用来直接显示,观察和测量电压波形机器参数的电子仪器。
2.用每一个触发脉冲产生于同触发电压所对应的触发信号的同相位点,故每次扫描起点会准确地落在同相位点于是每次扫描的起始点会准确地落在同相位点,于是每次扫描出的波形完全重复而稳定地显示被测波的波形。就是触发扫描实现同步的原理。
3.当示波器在Y轴与X轴同时输入正弦信号电压且他们的频率式简单的整数比时荧光屏上出现各式各样的图形这类图形称作“李萨如图”
实验数据记录
实验仪器:
YB4320F双追踪示波器,SG1642函数信号发生器 实验步骤:
1.用示波器观察信号波形
(1)调节扫描旋钮,使示波器的扫描线至长短适当的稳定水平亮线
(2)将信号发生器接到ch1或ch2 输入上,频率选用数百或数千赫兹方式开关及触发源开关的位置与信号输入通道一致的出稳定的波形。
(3)改变输入信号电压的波形,如正弦波,三角波,方波调节扫描微调,以得到2个 (4)可以在调节其他该扫描熟悉示波器 2.用李萨如图测定频率
(1)当示波器在Y轴与X轴同时输入正弦信号电压,且他们的频率式简单的整数比的的荧光屏上出现各种形式的图形,这类图形称作“李萨如图”
(2)当fg:fx=1:1时输入fg= ,绘出一种李萨如图 (3)当fg:fx=1:2时输入fg=,绘出一种李萨如图
数据处理如上
思考题
1.示波器为接通前,有那些注意事项?
2.波形不稳定时,应调节那个旋钮?
3.为了观察李萨如图,应该怎样设置按钮?
4.欲关闭示波器,首先应把那个旋钮扭到最小?
1,1。确定是否接地2。是否正确连接探头3。查看所有的终端额定值4。在是使用一个通道的情况下触发源选的通用一致
2.应调节水平微调使之稳定,再调节CH通道
3.首先示波器应该在XY轴输入正弦电压,且加上fg与fx上的频率成整数比
4.将示波器探头脱开测量电路,将输入选择开关,达到接地位置,关机,如果是模拟示波器的话,需要将聚集旋钮和亮度旋钮调低,然后在关闭电源。
示波器实验报告 第12篇
一、实验目的
1. 了解示波器的基本结构和工作原理:掌握示波器的基本组成,包括示波管、电源系统、同步系统、X轴偏转系统、Y轴偏转系统等。
2. 学会使用示波器观察各类信号波形:通过实际操作,能够使用示波器观察正弦波、方波、三角波等常见信号波形。
3. 掌握示波器测量信号的电压、频率和相位差的方法:利用示波器测量信号的电压幅值、频率以及两个信号之间的相位差。
二、实验器材
示波器:YB4320G 双踪示波器
信号发生器:EE1641B 型函数信号产生器/计数器
连接线:若干
三、实验原理
1. 示波器的基本结构
示波器主要由示波管(CRT)、电源系统、同步系统、X轴偏转系统、Y轴偏转系统等组成。示波管是示波器的核心部件,它利用电子束在电场或磁场中的偏转来显示电压信号随时间变化的波形。
2. 示波器的工作原理
示波器的工作原理是基于电子束在电场中的偏转。当电子束从电子枪发射出来后,经过加速和聚焦,形成一束细而高速的电子流。电子流在偏转系统的作用下,根据外加信号的电压变化,在荧光屏上描绘出被测信号的波形。
四、实验步骤
1. 熟悉示波器和信号发生器的面板:了解各旋钮和开关的功能,并将各开关置于指定位置。
2. 连接电路:将信号发生器产生的正弦信号接入示波器的Y轴输入端,同时确保示波器的X轴输入端连接适当的'锯齿波信号或设置为自动扫描模式。
3. 调整示波器:通过调节示波器的垂直偏转因数(VOLTS/DIV)和水平偏转因数(TIME/DIV),以及扫描速度选择开关,使波形在屏幕上稳定显示,且波形不超出屏幕范围。
4. 观察并记录波形:观察示波器屏幕上显示的波形,记录波形的形状、电压幅值、周期和频率等参数。
5. 测量信号参数:利用示波器的测量功能,测量信号的电压幅值、频率以及两个信号之间的相位差。
五、实验数据记录与处理
1. 正弦信号电压和频率的测量
电压幅值:通过示波器显示的波形高度和垂直偏转因数计算得出。
频率:通过示波器显示的波形周期和水平偏转因数计算得出,或使用示波器的频率测量功能直接读取。
2. 波形观察与记录
正弦波:观察并记录正弦波的形状、电压幅值、周期和频率。
方波:若条件允许,可接入方波信号进行观察和记录。
三角波:同样,若条件允许,可接入三角波信号进行观察和记录。
六、实验结果与分析
1. 波形分析
正弦波:波形平滑,具有周期性,电压幅值稳定。
方波:波形为矩形,电压在高低电平之间快速切换,具有明确的上升沿和下降沿。
三角波:波形为三角形,电压随时间线性变化,具有对称的上升沿和下降沿。
2. 误差分析
测量误差:可能由于示波器的读数误差、信号发生器的输出误差等因素引起。
操作误差:在调节示波器时,由于旋钮调节的精度限制,可能导致一定的误差。
七、讨论与建议
1. 讨论
示波器在电子测量中的应用:示波器是电子测量中不可或缺的工具,能够直观地显示信号的波形和参数,对于分析和诊断电路故障具有重要意义。
实验中的注意事项:在实验中,应注意安全用电,避免触电和短路等危险情况的发生。同时,应认真观察示波器上的波形变化,及时调整示波器的参数以获得准确的测量结果。
2. 建议
加强实践训练:通过更多的实践训练,加深对示波器工作原理和使用方法的理解,提高操作技能和测量精度。
拓展实验内容:可以引入更多类型的信号波形进行观察和测量,如锯齿波、脉冲波等,以丰富实验内容并加深对电子信号的理解。
八、结论
本次示波器实验通过观察和测量正弦波等信号的波形和参数,加深了对示波器工作原理和使用方法的理解。同时,也提高了自己的实践技能和测量精度。在未来的学习和工作中,将继续加强实践训练,不断提高自己的专业素养和实践能力。
示波器实验报告 第13篇
一、实验目的
1、理解示波器的基本工作原理:通过实际操作,掌握示波器作为电子测量仪器的基本功能及其内部信号处理的基本原理。
2、学习示波器的使用方法:熟悉示波器的面板布局、各旋钮和按键的功能,掌握如何正确设置示波器以观测和测量电信号的波形、频率、幅值等参数。
3、观察与分析电信号波形:通过示波器观察不同电路产生的电信号波形(如正弦波、方波、三角波等),分析其特点,加深对电子电路特性的理解。
二、实验器材
1、双踪示波器一台
2、信号发生器一台
3、连接线若干
4、待测电路
三、实验原理
示波器是一种能够显示电信号随时间变化的波形图形的电子测量仪器。它主要由示波管、垂直放大系统、水平扫描系统、电源系统以及触发系统等部分组成。示波器通过将被测信号送入垂直放大系统放大后,在示波管的.屏幕上显示出来,同时水平扫描系统提供时间基准,使得波形得以在时间轴上展开。触发系统用于稳定波形显示,确保测量的准确性。
四、实验步骤
1. 示波器预热与校准
接通示波器电源,预热5-10分钟,使仪器达到稳定工作状态。
使用标准信号源(如内置校准信号或外部信号发生器)对示波器进行校准,确保垂直灵敏度、水平扫描速率等参数准确。
2. 信号发生器设置
连接信号发生器与示波器,设置信号发生器输出所需的波形(如正弦波)、频率和幅值。
3. 示波器参数设置
调整示波器的垂直灵敏度(VOLTS/DIV),使波形在屏幕上占据合适的高度。
设置水平扫描速率(TIME/DIV),使波形在屏幕上清晰显示且不过于密集或稀疏。
调整触发模式(如自动触发、单次触发等),确保波形稳定显示。
4. 观测与分析
观察并记录示波器屏幕上显示的波形,包括波形的形状、频率、幅值等参数。
分析波形特点,如正弦波的周期性、方波的占空比等,并与理论值进行对比。
如需,改变信号发生器的参数,观察波形变化,进一步理解电信号的特性。
5. 注意事项
在操作过程中,注意保持仪器和连接线的清洁与干燥,避免短路或损坏。
避免长时间将示波器置于强光直射下,以免影响屏幕显示效果。
实验结束后,及时关闭电源,整理好实验器材。
五、结论
通过本次示波器实验,我深刻理解了示波器作为电子测量仪器的重要性及其基本工作原理。通过实际操作,我掌握了示波器的使用方法,能够熟练设置示波器参数以观测和测量电信号的波形、频率、幅值等参数。同时,通过观察和分析不同电路产生的电信号波形,我加深了对电子电路特性的理解,为后续课程的学习打下了坚实的基础。
示波器实验报告 第14篇
1.示波器的功能是什么?2.扫描同步如何理解?3.什么是李萨如图?
1.电子示波器是用来直接显示,观察和测量电压波形机器参数的电子仪器。
2.用每一个触发脉冲产生于同触发电压所对应的触发信号的同相位点,故每次扫描起点会准确地落在同相位点于是每次扫描的起始点会准确地落在同相位点,于是每次扫描出的波形完全重复而稳定地显示被测波的波形。就是触发扫描实现同步的原理。
3.当示波器在Y轴与X轴同时输入正弦信号电压且他们的频率式简单的整数比时荧光屏上出现各式各样的图形这类图形称作“李萨如图”
示波器实验报告 第15篇
1.显示系统
2.电源开关
3.亮度控制开关
4.聚焦调节开关
5.扫描光极限水平调节器
6.从左往右依次是;校准信号输出端、输出一千赫兹、伏的方波
7.垂直系统
8.垂直位移调节旋钮
9.垂直灵敏度选择开关
10.水平系统
11.水平位移调扭
12.水平位移微调扭
13.水平扫描因素扫描选择开关
示波器相关知识拓展:
示波器能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。
按照结构和性能不同分类
①普通示波器。电路结构简单,频带较窄,扫描线性差,仅用于观察波形。
②多用示波器。频带较宽,扫描线性好,能对直流、低频、高频、超高频信号和脉冲信号进行定量测试。借助幅度校准器和时间校准器,测量的准确度可达±5%。
③多线示波器。采用多束示波管,能在荧光屏上同时显示两个以上同频信号的波形,没有时差,时序关系准确。
④多踪示波器。具有电子开关和门控电路的结构,可在单束示波管的荧光屏上同时显示两个以上同频信号的波形。但存在时差,时序关系不准确。
⑤取样示波器。采用取样技术将高频信号转换成模拟低频信号进行显示,有效频带可达GHz级。
⑥记忆示波器。采用存储示波管或数字存储技术,将单次电信号瞬变过程、非周期现象和超低频信号长时间保留在示波管的荧光屏上或存储在电路中,以供重复测试。⑦数字示波器。内部带有微处理器,外部装有数字显示器,有的产品在示波管荧光屏上既可显示波形,又可显示字符。被测信号经模一数变换器(A/D变换器)送入数据存储器,通过键盘操作,可对捕获的波形参数的数据,进行加、减、乘、除、求平均值、求平方根值、求均方根值等的运算,并显示出答案数字。
示波器实验报告 第16篇
1.输入通道选择
输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10_位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。
2.输入耦合方式
输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。
示波器实验报告 第17篇
1.用示波器测频率几种方法,各有什么有何有优缺点?
周期法:
优点:周期法适用于任何频率的信号,并且过程比较简单。
缺点:误差较大,因为示波器显示的是波形,只能读出波的周期,通常是毫秒级甚至更小的数量级的,而频率是周期的倒数,这样读出的周期有一点误差计算出频率的误差就会被放大。
李萨如图形法:
优点:可以直观的观察出波形。测量相对准确。
缺点:操作比较费时,同时,它只是适合测量频率较低的信号。
示波器实验报告 第18篇
一、示波器的介绍:
示波器是一种用途十分广泛的电子测量仪器,它能把肉眼看不见的电信号变换成看得见的图像。
示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线。
示波器显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。
在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注:如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。
二、示波器的基本作用:
用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。
三、示波器的分类:
(1)按照信号的不同分类
模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。
数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器(DSO),数字荧光示波器(DPO)和采样示波器。
模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和超前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器的确从前台退到后台。
(2)按照结构和性能不同分类
①普通示波器:电路结构简单,频带较窄,扫描线性差,仅用于观察波形。
②多用示波器:频带较宽,扫描线性好,能对直流、低频、高频、超高频信号和脉冲信号进行定量测试。借助幅度校准器和时间校准器,测量的准确度可达±5%。
③多线示波器:采用多束示波管,能在荧光屏上同时显示两个以上同频信号的波形,没有时差,时序关系准确。
④多踪示波器:具有电子开关和门控电路的结构,可在单束示波管的荧光屏上同时显示两个以上同频信号的波形。但存在时差,时序关系不准确。
⑤取样示波器。采用取样技术将高频信号转换成模拟低频信号进行显示,有效频带可达GHz级。
⑥记忆示波器:采用存储示波管或数字存储技术,将单次电信号瞬变过程、非周期现象和超低频信号长时间保留在示波管的荧光屏上或存储在电路中,以供重复测试。
⑦数字示波器:内部带有微处理器,外部装有数字显示器,有的产品在示波管荧光屏上既可显示波形,又可显示字符。被测信号经模一数变换器(A/D变换器)送入数据存储器,通过键盘操作,可对捕获的波形参数的数据,进行加、减、乘、除、求平均值、求平方根值、求均方根值等的运算,并显示出答案数字。
四、简约介绍示波器的基本构造:
显示电路
显示电路包括示波管及其控制电路两个部分。示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管由电子枪、偏转系统和荧光屏3个部分组成。
(1)电子枪
电子枪用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。
(2)偏转系统
示波管的偏转系统大都是静电偏转式,它由两对相互垂直的平行金属板组成,分别称为水平偏转板和垂直偏转板。分别控制电子束在水平方向和垂直方向的运动。
(3)荧光屏
荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。
Y轴放大电路
由于示波管的偏转灵敏度甚低,例如常用的示波管13SJ38J型,其垂直偏转灵敏度为(约12V电压产生1cm的偏转量),所以一般的被测信号电压都要先经过垂直放大电路的放大,再加到示波管的垂直偏转板上,以得到垂直方向的适当大小的图形。
X轴放大电路
由于示波管水平方向的偏转灵敏度也很低,所以接入示波管水平偏转板的电压(锯齿波电压或其它电压)也要先经过水平放大电路的放大以后,再加到示波管的水平偏转板上,以得到水平方向适当大小的图形。
扫描同步电路
扫描电路产生一个锯齿波电压。该锯齿波电压的频率能在一定的范围内连续可调。锯齿波电压的作用是使示波管阴极发出的电子束在荧光屏上形成周期性的、与时间成正比的水平位移,即形成时间基线。这样,才能把加在垂直方向的被测信号按时间的变化波形展现在荧光屏上。
电源供给电路
电源供给电路:供给垂直与水平放大电路、扫描与同步电路以及示波管与控制电路所需的负高压、灯丝电压等。
五、示波器的使用方法:
示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。本章以SR-8型双踪示波器为例介绍。
(一)面板装置SR-8型双踪示波器的面板图如图所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。
1.显示部分主要控制件为:
(1)电源开关。
(2)电源指示灯。
(3)辉度 调整光点亮度。
(4)聚焦调整光点或波形清晰度。
(5)辅助聚焦 配合“聚焦”旋钮调节清晰度。
(6)标尺亮度调节坐标片上刻度线亮度。
(7)寻迹 当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。
(8)标准信号输出1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y轴输入灵敏度和X轴扫描速度。
2.Y轴插件部分
(1)显示方式选择开关用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式:
“交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电
子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。
“断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。
“YA”、“YB ”:显示方式开关置于“YA ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“YA”或“YB ”通道的信号波形。
“YA + YB”:显示方式开关置于“YA + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。
(2)“DC-⊥-AC”Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。
(3)“微调V/div”灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。
(4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。
(5)“↑↓” Y轴位移电位器,用以调节波形的垂直位置。
(6)“极性、拉YA ”YA 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - YA 。
(7)“内触发、拉YB ”触发源选择开关。在按的位置上(常态) 扫描触发信号分别取自YA 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。
(8)Y轴输入插座采用BNC型插座,被测信号由此直接或经探头输入。
3.X轴插件部分
(1)“t/div” 扫描速度选择开关及微调旋钮。X轴的光点移动速度由其决定,从μs~1s共分21档级。当该开关“微调”电位器顺时针方向旋转到底并接上开关后,即为“校准”位置,此时“t/div”的指示值,即为扫描速度的实际值。
(2)“扩展、拉×10”扫描速度扩展装置。是按拉式开关,在按的状态作正常使用,拉的位置扫描速度增加10倍。“t/div”的指示值,也应相应计取。采用“扩展 拉×10”适于观察波形细节。
(3)“→←” X轴位置调节旋钮。系X轴光迹的水平位置调节电位器,是套轴结构。外圈旋钮为粗调装置,顺时针方向旋转基线右移,反时针方向旋转则基线左移。置于套轴上的小旋钮为细调装置,适用于经扩展后信号的调节。
(4)“外触发、X外接”插座采用BNC型插座。在使用外触发时,作为连接外触发信号的插座。也可以作为X轴放大器外接时信号输入插座。其输入阻抗约为1MΩ。外接使用时,输入信号的峰值应小于12V。
(5)“触发电平”旋钮 触发电平调节电位器旋钮。用于选择输入信号波形的触发点。具体地说,就是调节开始扫描的时间,决定扫描在触发信号波形的哪一点上被触发。顺时针方向旋动时,触发点趋向信号波形的正向部分,逆时针方向旋动时,触发点趋向信号波形的负向部分。
(6)“稳定性”触发稳定性微调旋钮。用以改变扫描电路的工作状态,一般应处于待触发状态。调整方法是将Y轴输入耦合方式选择(AC-地-DC)开关置于地档,将V/div开关置于最高灵敏度的档级,在电平旋钮调离自激状态的情况下,用小螺丝刀将稳定度电位器顺时针方向旋到底,则扫描电路产生自激扫描,此时屏幕上出现扫描线;然后逆时针方向慢慢旋动,使扫描线刚消失。此时扫描电路即处于待触发状态。在这种状态下,用示波器进行测量时,只要调节电平旋钮,即能在屏幕上获得稳定的波形,并能随意调节选择屏幕上波形的起始点位置。少数示波器,当稳定度电位器逆时针方向旋到底时,屏幕上出现扫描线;然后顺时针方向慢慢旋动,使屏幕上扫描线刚消失,此时扫描电路即处于待触发状态。
(7)“内、外” 触发源选择开关。置于“内”位置时,扫描触发信号取自Y轴通道的被测信号;置于“外”位置时,触发信号取自“外触发X 外接”输入端引入的外触发信号。
(8)“AC”“AC(H)”“DC”触发耦合方式开关。“DC”档,是直流藕合状态,适合于变化缓慢或频率甚低(如低于100Hz)的触发信号。“AC”档,是交流藕合状态,由于隔断了触发中的直流分量,因此触发性能不受直流分量影响。“AC(H)”档,是低频抑制的交流耦合状态,在观察包含低频分量的高频复合波时,触发信号通过高通滤波器进行耦合,抑制了低频噪声和低频触发信号(2MHz以下的低频分量),免除因误触发而造成的波形幌动。
(9)“高频、常态、自动”触发方式开关。用以选择不同的触发方式,以适应不同的被测信号与测试目的。“高频”档,频率甚高时(如高于5MHz),且无足够的幅度使触发稳定时,选该档。此时扫描处于高频触发状态,由示波器自身产生的高频信号(200kHz信号),对被测信号进行同步。不必经常调整电平旋钮,屏幕上即能显示稳定的波形,操作方便,有利于观察高频信号波形。“常态”档,采用来自Y轴或外接触发源的输入信号进行触发扫描,是常用的触发扫描方式。“自动”挡,扫描处于自动状态(与高频触发方式相仿),但不必调整电平旋钮,也能观察到稳定的波形,操作方便,有利于观察较低频率的信号。
(10)“+、-”触发极性开关。在“+”位置时选用触发信号的上升部分,在“-”位置时选用触发信号的下降部分对扫描电路进行触发。
(二)使用步骤
用示波器能观察各种不同电信号幅度随时间变化的波形曲线,在这个基础上示波器可以应用于测量电压、时间、频率、相位差和调幅度等电参数。
下面介绍用示波器观察电信号波形的使用步骤。
1.选择Y轴耦合方式
根据被测信号频率的高低,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC。
2.选择Y轴灵敏度
根据被测信号的大约峰-峰值(如果采用衰减探头,应除以衰减倍数;在耦合方式取DC档时,还要考虑叠加的直流电压值),将Y轴灵敏度选择V/div开关(或Y轴衰减开关)置于适当档级。实际使用中如不需读测电压值,则可适当调节Y轴灵敏度微调(或Y轴增益)旋钮,使屏幕上显现所需要高度的波形。
3.选择触发(或同步)信号来源与极性
通常将触发(或同步)信号极性开关置于“+”或“-”档。
4.选择扫描速度
根据被测信号周期(或频率)的大约值,将X轴扫描速度t/div(或扫描范围)开关置于适当档级。实际使用中如不需读测时间值,则可适当调节扫速t/div微调(或扫描微调)旋钮,使屏幕上显示测试所需周期数的波形。如果需要观察的是信号的边沿部分,则扫速t/div开关应置于最快扫速档。
5.输入被测信号
被测信号由探头衰减后(或由同轴电缆不衰减直接输入,但此时的输入阻抗降低、输入电容增大),通过Y轴输入端输入示波器。
六、示波器使用前的检查:
示波器初次使用前或久藏复用时,有必要进行一次能否工作的简单检查和进行扫描电路稳定度、垂直放大电路直流平衡的调整。示波器在进行电压和时间的定量测试时,还必须进行垂直放大电路增益和水平扫描速度的校准。示波器能否正常工作的检查方法、垂直放大电路增益和水平扫描速度的校准方法,由于各种型号示波器的校准信号的幅度、频率等参数不一样,因而检查、校准方法略有差异。
示波器实验报告 第19篇
一、实验目的及要求:
(1)了解示波器的基本工作原理。
(2)学习示波器、函数信号发生器的使用方法。
(3)学习用示波器观察信号波形和利用示波器测量信号频率的方法。
二、实验原理:
1)示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。
2)示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。
3)示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。
4)李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N(x),竖直方向最多可得的交点数为N(y),则x和y方向输入的两正弦波的频率之比为f(x):f(y)=N(y):N(x)。
三、实验仪器:
示波器、函数信号发生器。
四、实验操作的主要步骤:
(一)示波器的使用与调节
1)将各控制旋钮置于相关位置。
2)接通电源,按下面板左下角的“pOWER”钮,指示灯亮,稍待片刻,仪器进入正常工作状态。
3)经示波管灯丝预热后,屏上出现绿色亮点,调节INTEN、FOCUS、pOSITION,使亮点清晰。
4)将TIME/DIV逐渐旋到2ms或5ms,观察光点由慢变快移动,直至屏上显示一条稳定的水平扫描线,按(3)使线清晰。
(二)实验内容:
1)观察正弦波波长:
a)将ACGNDDC转换开关置于AC
b)讲面板右上角的SOURCE置于CH2
c)将函数信号发生器的50Hz信号源直接输入CH2-Y输入端(红插头应接函数发生器输出的红接线柱)
d)屏上显示出正弦波(调V/DIV调节大小,TIME/DIV扫描开关使之出现正弦波,IEVEL使波形稳定)
e)改变扫描电压的频率(TIME/DIV)观察正弦波得变化,使屏上出现多个完整的波形图。
2)观察并描绘李萨如图形,测量正弦信号频率。
利用利萨如图测正弦电压的频率基本原理
通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。此法于1855年由利萨如所证明。将被测正弦信号fx加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比fy/fx是整数时,在荧光屏上将出现利萨如图。
不同频率比的利萨如图形。判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为Nx,竖直线上的切点数最多为Ny,则
fy/fx=Nx/Ny
图1李萨如图与信号频率的关系
图2fx/fy=1:1时李萨如图与信号相位差的关系
五、数据记录及处理:
用李萨如图测量正弦信号频率
六、实验注意事项:
1.信号发生器、示波器预热3分钟以后才能正常工作。
2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);
3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。
4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。
七、趣味物理实验心得:
一个学期就要过去了,在本学期里,老师又教了很多实验,我做了许多类型的实验,让我受益菲浅,我又学会了很多东西,其中很多知识在平时的学习中都是无法学习到的,其中很多实验都开阔了我们的视野,让我们获得了许多平时课堂上得不到的知识。
通过高中以及大学两个学期的物理实验,我发现实验是物理学的基础,我们学到的许多理论都来源于实验,也学到了许多物理课上没有教到的理论。很多实验都是需要花费许多心思去学习的,也是非常复杂的。经过这一年的大学物理实验课的学习,让我收获多多。想要做好物理实验容不得半点马虎,她培养了我们耐心、信心和恒心。当然,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要比较强的动手能力的时侯我还不能从容应对,实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台让我们去锻炼自己的动手能力。我的学习方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成。伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。唯有实验才是检验理论正确与否的唯一方法。为了要使你的理论被人接受,你必须用事实来证明。
示波器实验报告 第20篇
1.基础操作:
了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。
明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。
2.观测李萨如图形:
向CH1、CH2分别输入两个信号源的正弦波,扫描时间的粗调旋钮置于X-Y方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。
设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值fy进行比较,一一求出它们的相对误差。
示波器实验报告 第21篇
实验名称
要用最简练的语言反映实验的内容。如验证某程序、定律、算法,可写成“验证---”;分析---。
实验日期和地点(年、月、日)
实验目的
目的要明确,在理论上验证定理、公式、算法,并使实验者获得深刻和系统的理解,在实践上,掌握使用实验设备的技能技巧和程序的调试方法。一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。
实验原理
在此阐述实验相关的主要原理。
实验内容
这是实验报告极其重要的内容。要抓住重点,可以从理论和实践两个方面考虑。这部分要写明依据何种原理、定律算法、或操作方法进行实验。详细理论计算过程。
示波器实验报告 第22篇
(一) 示波器的使用与调节
1) 将各控制旋钮置于相关位置。
2) 接通电源,按下面板左下角的“POWER”钮,指示灯亮,稍待片刻,仪器进入正常工作状 态。
3) 经示波管灯丝预热后,屏上出现绿色亮点,调节INTEN、FOCUS、POSITION,使亮点清晰。
4) 将TIME/DIV逐渐旋到2ms或5ms,观察光点由慢变快移动,直至屏上显示一条稳定的水 平扫描线,按(3)使线清晰。
(二) 实验内容:
1) 观察正弦波波长:
a)将AC GND DC转换开关置于AC
b)讲面板右上角的SOURCE置于CH2
c)将函数信号发生器的50Hz信号源直接输入CH2-Y输入端(红插头应接函数发生器输出的红接线柱)
d)屏上显示出正弦波(调V/DIV调节大小,TIME/DIV扫描开关使之出现正弦波,IEVEL使波形稳定)
e)改变扫描电压的频率(TIME/DIV)观察正弦波得变化,使屏上出现多个完整的波形图。
2) 观察并描绘李萨如图形,测量正弦信号频率。
利用利萨如图测正弦电压的频率基本原理
通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。此法于1855年由利萨如所证明。将被测正弦信号fx加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比fy/fx是整数时,在荧光屏上将出现利萨如图。
不同频率比的利萨如图形。判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为Nx,竖直线上的切点数最多为Ny,则
fy/fx=Nx/Ny
图1 李萨如图与信号频率的关系
图2 fx/fy=1:1时李萨如图与信号相位差的关系
示波器实验报告 第23篇
示波器作为电子测量领域的重要工具,能够将人眼无法直接观测的交变电信号转换成图像显示在荧光屏上,极大地便利了电信号的分析与测量。本实验通过实际操作,了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法,学会观测电信号波形、电压副值以及频率,并进一步学习如何通过示波器观察李萨如图并测频率。
实验目的
1.了解示波器的基本机构和工作原理。
2.掌握使用示波器和信号发生器的基本方法。
3.学会使用示波器观测电信号波形、电压副值以及频率。
4.学会使用示波器观察李萨如图并测频率。
实验仪器与设备
1.示波器×1
2.信号发生器×2
3.信号线×2
实验原理
1.示波器的基本组成
示波器主要由示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路和电源等部分组成。示波管是示波器的核心,它将电信号转换为光信号显示在荧光屏上。
2.示波器工作原理
示波器通过控制X轴(水平方向)和Y轴(垂直方向)的偏转板电压,使电子束在荧光屏上描绘出被测信号的波形。当在Y轴偏转板上加正弦电压,同时在X轴偏转板上加锯齿波电压时,电子束在水平和垂直两个方向上同时偏转,形成被测信号的波形图。
3.李萨如图形
如果示波器的X和Y输入是频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的.光点轨迹,这种轨迹图称为李萨如图形。通过测量图形上的切点数,可以计算出两个正弦信号的频率之比。
实验步骤
1.准备工作
阅读示波器说明书,了解每个旋钮的作用。
接通示波器电源开关,预热一段时间。
调节示波器的亮度和聚焦旋钮,使扫描线清晰。
2.观察波形
向CH1和CH2分别输入两个信号源的正弦波。
将“扫描时间”的“粗调”旋钮置于“X—Y”方式,使两路信号进行合成。
调节示波器,使波形稳定并清晰显示。
3.观察李萨如图形
调节信号发生器的频率,使两个正弦信号的频率之比为简单整数比(如1:1,1:2等)。
观察荧光屏上出现的李萨如图形,并记录其特点。
画出草图,并分析图形的特点与两个信号频率之间的关系。
4.测量频率
设定一个已知频率(如fx=1000Hz)作为基准。
通过观察李萨如图形,计算另一个信号的频率fy。
与信号发生器读数值fy进行比较,求出相对误差。
实验结果与分析
1.实验结果
在实验过程中,我们成功观察到了不同频率比下的李萨如图形,并测量了未知信号的频率。通过计算,我们得到了与信号发生器读数相近的频率值,验证了示波器测量频率的准确性。
2.实验分析
示波器实验报告 第24篇
示波器作为一种常用的电子测量仪器,在电子技术领域有着广泛的应用。通过本次实验,我们深入了解示波器的工作原理和使用方法,掌握其在测量电信号方面的基本操作和应用技巧。
一、实验目的
1、了解示波器的基本结构和工作原理。
2、掌握示波器的基本操作方法,包括调节垂直灵敏度、水平扫描速度、触发方式等。
3、学会用示波器观察和测量各种电信号的波形、幅度、周期和频率等参数。
二、实验仪器
示波器、函数信号发生器、探头等。
三、实验原理
示波器是一种能够显示电信号波形的电子仪器,它通过在荧光屏上产生一个快速移动的亮点来描绘电信号的变化。示波器的'主要组成部分包括垂直放大器、水平扫描发生器、触发电路和荧光屏等。
四、实验内容与步骤
1、熟悉示波器的面板操作
了解各控制旋钮的功能和作用。
练习调节亮度、聚焦、垂直位移和水平位移等。
2、观察正弦波信号
连接函数信号发生器和示波器,设置函数信号发生器输出正弦波信号。
调节示波器的垂直灵敏度和水平扫描速度,使正弦波波形稳定显示在屏幕上。
测量正弦波的幅度和周期,并计算其频率。
3、观察方波信号
改变函数信号发生器的输出为方波信号。
重复上述步骤,观察并测量方波的参数。
4、观察三角波信号
再次改变函数信号发生器的输出为三角波信号。
进行观察和测量。
五、实验数据与分析
1、正弦波
幅度:xx(V)
周期:xx(ms)
频率:xx(Hz)
2、方波
幅度:xx(V)
周期:xx(ms)
频率:xx(Hz)
3、三角波
幅度:xx(V)
周期:xx(ms)
频率:xx(Hz)
六、实验总结
通过本次实验,我们对示波器的使用有了更深入的了解和掌握。能够熟练地调节示波器的各项参数,准确地测量各种电信号的波形参数。但在实验过程中,也存在一些不足之处,如对某些旋钮的调节不够精确,导致测量结果存在一定的误差。在今后的学习和实验中,我们将进一步加强练习,提高实验技能和数据处理能力。
七、注意事项
1、正确连接示波器和信号发生器,避免短路或接错。
2、调节示波器参数时,应逐步进行,避免过度调节导致显示混乱。
3、实验结束后,关闭仪器设备,整理好实验器材。
示波器实验报告 第25篇
示波器作为电子测量领域的重要工具,能够将不可见的电信号波形转换成可视化的图像显示在荧光屏上,从而帮助工程师和技术人员更好地观察、分析和测量电子信号的波形、频率、相位等参数。本实验通过实际操作,使学生掌握示波器的基本工作原理和使用方法,理解电信号波形的观测与分析过程,为后续的电子电路实验及科研活动打下坚实基础。
实验目的
1、了解示波器的基本机构和工作原理。
2、掌握使用示波器和信号发生器的基本方法。
3、学会使用示波器观测电信号波形、电压幅值以及频率。
4、通过实际操作,加深对电子信号特性的理解。
实验器材
1、示波器×1
2、信号发生器×2
3、信号线×2
4、其他辅助工具(如螺丝刀、万用表等)
实验原理
示波器主要由示波管、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路和电源等部分组成。其中,示波管是核心部件,包括电子枪、偏转系统和荧光屏三部分,能将电信号转换为光信号显示在荧光屏上。
当被测信号加在Y轴偏转板上时,电子束在垂直方向上产生偏转,形成与被测信号相对应的波形图像;同时,锯齿波信号加在X轴偏转板上,使电子束在水平方向上产生扫描,从而在荧光屏上展开完整的波形图像。
实验步骤
1、实验准备
阅读示波器使用说明书,了解每个旋钮的`功能和操作方法。
检查示波器和信号发生器是否正常工作,确保所有连接线和接口无损坏。
预热示波器,一般需开机预热15分钟。
2、示波器基本设置
接通示波器电源,调节亮度、聚焦等旋钮,使扫描线清晰可见。
将示波器设置为“X-Y”模式,以便观察李萨如图形。
调节垂直偏转因数和水平偏转因数,以适应被测信号的幅度和频率范围。
3、信号输入与观测
向CH1、CH2分别输入两个信号源的正弦波。
调整“扫描时间”的“粗调”旋钮,使波形在荧光屏上稳定显示。
观察并记录不同频率比下的李萨如图形,分析其特点与两个信号频率之间的关系。
4、数据处理与分析
设fx=1000Hz为约定真值,通过测量和计算求出另一信号发生器的输出频率fy。
将计算结果与信号发生器读数值进行比较,计算相对误差。
分析误差产生的原因,如仪器系统误差、操作不当等。
实验结果
通过实验,我们成功观测到了不同频率比下的李萨如图形,并计算出了未知信号的频率。实验数据表明,示波器在观测电信号波形和测量频率方面具有较高的准确性和可靠性。
实验总结
本次实验不仅使我们掌握了示波器的基本工作原理和使用方法,还加深了对电子信号特性的理解。通过实际操作和数据分析,我们验证了示波器在电子测量领域的重要作用。同时,我们也认识到在实验过程中需要注意细节和精度控制,以减小误差并提高实验结果的准确性。
未来,随着电子技术的不断发展,示波器将更加智能化和多功能化。我们期待能够进一步学习和掌握更先进的示波器技术,为电子电路的设计、调试和分析提供更加有力的支持。
示波器实验报告 第26篇
阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。
1.荧光屏
现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。
当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—为中余辉,为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。
由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。
2.电子枪及聚焦
电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。
电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。
3.偏转系统
偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。
4.示波管的电源
为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。
示波器实验报告 第27篇
1)示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。
2)示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。
3)示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。
4)李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N(x),竖直方向最多可得的交点数为N(y),则x和y方向输入的两正弦波的频率之比为f(x):f(y)=N(y):N(x)。
示波器实验报告 第28篇
示波器的使用
预习思考题
1.示波器的功能是什么?
2.扫描同步如何理解?
3.什么是李萨如图?
1.电子示波器是用来直接显示,观察和测量电压波形机器参数的电子仪器。
2.用每一个触发脉冲产生于同触发电压所对应的触发信号的同相位点,故每次扫描起点会准确地落在同相位点于是每次扫描的起始点会准确地落在同相位点,于是每次扫描出的波形完全重复而稳定地显示被测波的波形。就是触发扫描实现同步的原理。
3.当示波器在Y轴与x轴同时输入正弦信号电压且他们的频率式简单的整数比时荧光屏上出现各式各样的图形这类图形称作_李萨如图_
实验数据记录
实验仪器:
YB4320F双追踪示波器,SG1642函数信号发生器 实验步骤:
1.用示波器观察信号波形
(1)调节扫描旋钮,使示波器的扫描线至长短适当的稳定水平亮线
(2)将信号发生器接到ch1或ch2 输入上,频率选用数百或数千赫兹方式开关及触发源开关的位置与信号输入通道一致的出稳定的波形。
(3)改变输入信号电压的波形,如正弦波,三角波,方波调节扫描微调,以得到2个
(4)可以在调节其他该扫描熟悉示波器
2.用李萨如图测定频率
(1)当示波器在Y轴与x轴同时输入正弦信号电压,且他们的频率式简单的整数比的'的荧光屏上出现各种形式的图形,这类图形称作_李萨如图_
(2)当fg:fx=1:1时输入fg==50hz ,绘出一种李萨如图
(3)当fg:fx=1:2时输入fg==200hz,绘出一种李萨如图
数据处理如上
思考题
1.示波器为接通前,有那些注意事项?
2.波形不稳定时,应调节那个旋钮?
3.为了观察李萨如图,应该怎样设置按钮?
4.欲关闭示波器,首先应把那个旋钮扭到最小?
1.确定是否接地;是否正确连接探头;查看所有的终端额定值;在是使用一个通道的情况下触发源选的通用一致
2.应调节水平微调使之稳定,再调节CH通道
3.首先示波器应该在xY轴输入正弦电压,且加上fg与fx上的频率成整数比
4.将示波器探头脱开测量电路,将输入选择开关,达到接地位置,关机,如果是模拟示波器的话,需要将聚集旋钮和亮度旋钮调低,然后在关闭电源。
示波器实验报告 第29篇
一、实验目的及要求:
(1)了解示波器的基本工作原理。
(2)学习示波器、函数信号发生器的使用方法。
(3)学习用示波器观察信号波形和利用示波器测量信号频率的方法。
二、 实验原理:
1) 示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。
2) 示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。
3) 示波器显示波形的原理:如果在x轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而x轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在x轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与x轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的.波形。
4) 李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两 个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N(x),竖直方向最多可得的交点数为N(y),则x和y方向输入的两正弦波的频率之比为 f(x):f(y)=N(y):N(x)。
三、 实验仪器:
示波器、函数信号发生器。
四、 实验操作的主要步骤:
(一) 示波器的使用与调节
1) 将各控制旋钮置于相关位置。
2) 接通电源,按下面板左下角的“POWER”钮,指示灯亮,稍待片刻,仪器进入正常工作状 态。
3) 经示波管灯丝预热后,屏上出现绿色亮点,调节INTEN、FOCUS、POSITION,使亮点清晰。
4) 将TIME/DIV逐渐旋到2ms或5ms,观察光点由慢变快移动,直至屏上显示一条稳定的水 平扫描线,按(3)使线清晰。
(二) 实验内容:
1) 观察正弦波波长:
a)将AC GND DC转换开关置于AC
b)讲面板右上角的SOURCE置于CH2
c)将函数信号发生器的50Hz信号源直接输入CH2-Y输入端(红插头应接函数发生器输出的红接线柱)
d)屏上显示出正弦波(调V/DIV调节大小,TIME/DIV扫描开关使之出现正弦波,IEVEL使波形稳定)
e)改变扫描电压的频率(TIME/DIV)观察正弦波得变化,使屏上出现多个完整的波形图。
2) 观察并描绘李萨如图形,测量正弦信号频率。
利用利萨如图测正弦电压的频率基本原理
通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。此法于1855年由利萨如所证明。将被测正弦信号fx加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比fy/fx是整数时,在荧光屏上将出现利萨如图。
不同频率比的利萨如图形。判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为Nx,竖直线上的切点数最多为Ny,则fy/fx=Nx/Ny
五、数据记录及处理:
用李萨如图测量正弦信号频率
六、实验注意事项 :
1.信号发生器、示波器预热3分钟以后才能正常工作。
2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);
3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。
4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。
七、趣味物理实验心得:
一个学期就要过去了,在本学期里,老师又教了很多实验,我做了许多类型的实验,让我受益匪浅,我又学会了很多东西,其中很多知识在平时的学习中都是无法学习到的,其中很多实验都开阔了我们的视野,让我们获得了许多平时课堂上得不到的知识。
通过高中以及大学两个学期的物理实验,我发现实验是物理学的基础,我们学到的许多理论都来源于实验,也学到了许多物理课上没有教到的理论。很多实验都是需要花费许多心思去学习的,也是非常复杂的。经过这一年的大学物理实验课的学习,让我收获多多。想要做好物理实验容不得半点马虎,她培养了我们耐心、信心和恒心。当然,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要比较强的动手能力的时侯我还不能从容应对,实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台让我们去锻炼自己的动手能力。我的学习方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成。伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。唯有实验才是检验理论正确与否的唯一方法。为了要使你的理论被人接受,你必须用事实来证明。
示波器实验报告 第30篇
【实验目的】
1、了解示波器的基本结构和工作原理,学会正确使用示波器。 2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。
3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。
【实验仪器】
固纬GOS-620型双踪示波器一台,GFG-809型信号发生器两台,连线若干。
【实验原理】
示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。在各行各业与各个研究领域都有着广泛的应用。其基本结构与工作原理如下
1、示波器的基本结构与显示波形的基本原理
本次实验使用的是台湾固纬公司生产的通用双踪示波器。基本结构大致可分为示波管(CRT)、扫描同步系统、放大与衰减系统、电源系统四个部分。 “示波管(CRT)”是示波器的核心部件如图1所示的。可细分为电子枪,偏转系统和荧光屏三部分。
1)电子枪
电子枪包括灯丝F,阴极K,控制栅极G,第一阳极A1,第二阳极A2等。阴极被灯丝加热后,可沿轴向发射电子。并在荧光屏上显现一个清晰的小圆点。
2)偏转系统
偏转系统由两对互相垂直的金属偏转板x和y组成,分别控制电子束在水平方向和竖直方向的偏转。
从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。若受到横向电场的作用,电子束的运动方向就会偏离轴线,
F灯丝,K阴极,G控制栅极,A1、A2第一、第二阳极,Y、X竖直、水平偏转板
图1示波管结构简图
屏上光点的位置就会移动。x偏转板之间的横向电场用来控制光点在水平方向的位移,y偏转板用来控制光点在竖直方向的位移。如果两对偏转板都加上电场,则光点在二者的共同控制下,将在荧光屏平面二维方向上发生位移。
3)荧光屏
荧光屏的作用是将电子束轰击点的轨迹显示出来以供观测。
4)显示波形的原理
在竖直偏转板上加一交变正弦电压,可看到一条竖直的亮线,如图3所示。在水平偏转板上加“锯齿波电压”扫描电压,使荧光屏上的亮点沿水平方向拉开。电子的运动是两相互相垂直运动的合成。当锯齿波电压与正弦电压的变化周期相等时,在荧光屏上将显示出一个稳定的正弦电压波形图如图4所示。
当波形信号的频率等于锯齿波频率的整数倍时,荧光屏上将呈现整数个完整而稳定的被测信号的波形,当两者不成整数倍时,对于被测信号来说,每次扫描的起点都不会相同,结果造成波形在水平方向上不断的移动。为了消除这一现象,必须使被测信号的起点与扫描电压的起点保持“同步”,这一功能由机内 “触发同步”电路来完成。
2、利用利萨如图测正弦电压的.频率基本原理
通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。此法于1855年由利萨如所证明。将被测正弦信号fy加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比
fyfx
是整数时,在荧光屏上将出现利萨如
图5给出了几种不同频率比的利萨如图形。判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为NX,竖直线上的切点数最多为NY,则
fyfx
图5的第一个图形,nx2,ny4,Y轴上的信号频率fy与x轴上的信号频率
fx之比为,若fx已知,则fy可求。
【实验内容与步骤】
开机前完成以下准备工作:扫描微调、电压灵敏度微调置校准档(顺时针打死)、扫描方式(置自动)、触发源选项(置CH1或CH2)、耦合方式(置AC);按压电源按钮预热3分钟。
(2)初始化示波器面板获得“点”:辉度、聚焦、三个位置旋钮置于居中位置,扫描灵敏度置于正交模式。(五居中一归零);
(3)顺时针旋转扫描灵敏度选扭置档获取扫描线; (4)利用CH1观察机内方波校准信号并作为待测电信号1,记录其相关参数于黑板给出的数据记录表格第一行;
(5)分别利用CH1与CH2两个通道观察左右两个音频信号发生器提供的10V1000Hz与15VHz的正弦交流信号,并作为待测电信号2与待测电信号3,记录其相关参数于黑板给出的数据记录表格第二行与第三行。
(6)扫描灵敏度选钮置正交模式,按压下触发交替旋钮,显示模式置双踪模式观测不同频率比的利萨如图形。
(7)申请课堂考核,归整仪器结束实验。
【实验数据与实验结果】
图5利萨如图
附表 电信号电压、频率的测量数据记录表(11海科曹丽安娜提供)
实验结果:详见下页附图(11海科曹丽安娜提供)
注意事项
1.信号发生器、示波器预热3分钟以后才能正常工作。
2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);
3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。
4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。
示波器实验报告 第31篇
(1) 掌握ISE 集成开发环境和Modelsim软件的使用方法;
(2) 熟悉S6 Card实验板的`使用方法。
(3) 掌握使用Verilog HDL语言实现常用组合逻辑和时序逻辑的方
(4) 了解Chipscope的功能与使用方法。
(1) 熟悉S6 CARD实验板;
(2) 熟悉ISE集成开发环境;
(4)m序列产生器仿真与在板Chipscope调试。
module m_seq_gen(
reg state;//定义变量state,为寄存器型,位宽为4
always @(posedge clk or negedge reset)//当clk上升沿来到或者reset下降沿来到,//触发敏感事件,执行以下程序
state
state
state
assign seq = state; //连续赋值,将state第一位值赋给seqEndmodule
module test_m;
reg clk;
// Instantiate the Unit Under Test (UUT)
m_seq_gen uut (
.clk(clk),
clk = 0;
reset = 0;
// Wait 100 ns for global reset to finish
#100;
reset = 0;
#50 reset = 1;
always #10 clk = ~clk;//产生测试时钟,延时10s后使时钟取反endmodule
板子上拨码开关的6、7、8和1、2、3分别作为加法器的输入,D1-D4 LED灯分别表示cout和sum,拨动拨码开关,观察
运算后,寄存器移位,运算出的值赋给第一个寄存器,构成新的系统寄存器状态值。
第一行为时钟信号,第二行为重置信号,第三行为输出的m序列。
示波器实验报告 第32篇
一个学期就要过去了,在本学期里,老师又教了很多实验,我做了许多类型的实验,让我受益菲浅,我又学会了很多东西,其中很多知识在平时的学习中都是无法学习到的,其中很多实验都开阔了我们的视野,让我们获得了许多平时课堂上得不到的知识。
通过高中以及大学两个学期的物理实验,我发现实验是物理学的基础,我们学到的许多理论都来源于实验,也学到了许多物理课上没有教到的理论。很多实验都是需要花费许多心思去学习的,也是非常复杂的。经过这一年的大学物理实验课的学习,让我收获多多。想要做好物理实验容不得半点马虎,她培养了我们耐心、信心和恒心。当然,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要比较强的动手能力的时侯我还不能从容应对,实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台让我们去锻炼自己的动手能力。我的学习方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成。伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。唯有实验才是检验理论正确与否的唯一方法。为了要使你的理论被人接受,你必须用事实来证明。
示波器实验报告 第33篇
【实验目的】
1.了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。
2.学会使用示波器观测电信号波形和电压副值以及频率。
3.学会使用示波器观察李萨如图并测频率。
【实验原理】
1.示波器都包括几个基本组成部分:
示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。
2.李萨如图形的原理:
如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。
如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。
【实验仪器】
示波器×1,信号发生器×2,信号线×2。
【实验内容】
1.基础操作:
了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。
明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。
2.观测李萨如图形:
向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“X-Y”方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的`各种频率比的李萨如图形。
设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较,一一求出它们的相对误差。
【误差分析】
1.两台信号发生器不协调。
2.桌面振动造成的影响。
3.示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。
4.取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准。
5.机器系统存在系统误差。
选取时上下跳动,可能取值不准。
示波器实验报告 第34篇
1.示波器都包括几个基本组成部分:
示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。
2.李萨如图形的原理:
如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。
如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。
示波器实验报告 第35篇
【引言】
示波器是一种用来观察电信号波形的重要仪器,广泛应用于电子、通信、医疗等领域。本实验旨在通过对示波器的基本操作和功能进行学习,掌握示波器的使用方法,以及对不同类型的波形进行分析和测量。
【实验目的】
1. 了解示波器的基本结构和工作原理;
2. 掌握示波器的基本操作;
3. 使用示波器对不同类型的波形进行观测和测量。
【实验仪器】
1. 示波器(型号:xxx);
2. 示波器探头;
3. 信号发生器;
4. 直流电源。
【实验原理】
示波器是一种能够将电压随时间变化的波形显示在屏幕上的仪器。当待测信号加到示波器的输入端时,示波器会对信号进行放大、偏置和加工处理,然后在屏幕上显示出整个过程。示波器通常具有触发、水平、垂直、扫描速率等控制功能,可以方便地对信号进行观测和测量。
【实验步骤】
1. 连接示波器和信号发生器:将信号发生器的输出端和示波器的输入端用示波器探头连接;
2. 打开示波器,并设置合适的.触发方式、水平和垂直灵敏度;
3. 调节示波器触发和扫描控制,观察信号波形在示波器屏幕上的显示;
4. 更换不同频率、幅度的信号源,观察示波器的读数变化;
5. 切换示波器的不同测量模式,对波形进行测量分析。
【实验结果与分析】
通过实验,我们成功地掌握了示波器的基本操作方法,了解了示波器的触发、水平、垂直灵敏度的调节方法。在实验中,我们观测到了正弦波、方波、三角波等不同类型的信号波形,并成功地进行了测量和分析。
【实验总结】
通过本次实验,我们深入了解了示波器的使用方法和功能,掌握了基本的示波器操作技巧,提高了对信号波形观测和测量的能力。示波器作为电子技术中的重要工具,对于电子工程师和科研人员来说具有重要意义,它能够帮助我们更好地理解和分析各种电信号波形,为电子技术应用提供了可靠的支持。
【致谢】
感谢老师对本次实验的指导和帮助,也感谢实验室的工作人员对实验设备的维护和保障。
示波器实验报告 第36篇
示波器作为电子测量领域的重要工具,能够将人眼无法直接观测的交变电信号转换成直观的图像显示在荧光屏上,对于观察、分析和测量电路中的电信号波形、电压、频率等参数具有重要意义。本次实验通过实际操作,掌握示波器的基本工作原理、使用方法及注意事项,进而提升对电子测量技术的理解和应用能力。通过本次实验,我们不仅能够加深对示波器结构的认识,还能学会如何使用示波器观测和测量各种电信号,为后续的电子学习和科研活动打下坚实的基础。
实验目的
1.了解示波器的基本机构和工作原理。
2.掌握使用示波器和信号发生器的基本方法。
3.学会使用示波器观测电信号波形、电压幅值及频率。
4.通过实际操作,加深对示波器在电子测量中应用的理解。
实验仪器与设备
1.示波器×1
2.信号发生器×2
3.信号线×2
4.其他辅助工具(如万用表、连接线等)
实验原理
示波器主要由示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路及电源等部分组成。示波器通过电子束在荧光屏上的偏转来显示电信号的波形。在垂直偏转板上加被测信号电压,在水平偏转板上加锯齿波电压,电子束在荧光屏上描绘出被测信号的波形。通过调节示波器的各个旋钮,可以实现对波形的放大、缩小、移动及稳定显示。
实验步骤
1.实验准备
阅读示波器使用说明书,了解各旋钮的功能和操作方法。
接通示波器电源,预热10-15分钟,确保仪器稳定工作。
检查信号发生器,确保其输出信号稳定可靠。
2.仪器连接
使用信号线将两个信号发生器的输出端分别连接到示波器的CH1和CH2输入端。
将示波器的扫描时间旋钮置于“AUTO”或“X-Y”模式,以便观察合成波形。
3.信号观测
调节示波器的“亮度”和“聚焦”旋钮,使扫描线清晰显示。
向CH1和CH2输入两个正弦波信号,调整信号频率和幅度,观察示波器上的波形显示。
通过调节示波器的“垂直偏转因数”和“水平偏转因数”旋钮,改变波形在荧光屏上的大小和位置。
4.李萨如图观测
将示波器的扫描时间旋钮置于“X-Y”模式,使两路信号进行合成。
调节信号发生器的频率,使两个正弦波的频率之比满足特定条件(如整数比),观察并绘制出李萨如图形。
分析李萨如图形的特点与两个信号频率之间的`关系,验证理论计算结果的正确性。
实验数据与结果
1.当两个正弦波的频率之比为整数比时,荧光屏上呈现出稳定的李萨如图形。
2.通过测量图形上的切点数,计算出两个信号的频率之比,并与理论值进行比较,验证实验结果的准确性。
实验结论
通过本次实验,我们成功地掌握了示波器的基本使用方法,学会了如何观测和测量电信号的波形、电压幅值及频率。同时,我们还通过观测李萨如图形,加深了对示波器在频率测量中应用的理解。实验过程中,我们遇到了仪器调节、信号干扰等问题,但通过不断尝试和调整,最终得到了满意的实验结果。本次实验不仅提高了我们的动手能力和实践能力,还培养了我们分析问题和解决问题的能力。
实验反思
1.在实验过程中,应注意保持实验环境的安静和稳定,避免外界因素对实验结果的影响。
2.在调节示波器旋钮时,应缓慢进行,避免过快的调节导致波形失真或仪器损坏。
3.在观测李萨如图形时,应注意调整信号发生器的频率和相位差,以获得稳定的图形显示。
通过本次实验,我们深刻体会到了示波器在电子测量中的重要性,也更加坚定了我们学好电子技术的信心和决心。
示波器实验报告 第37篇
示波器实验报告
示波器实验报告
【实验题目】示波器的原理和使用
【实验目的】
1.了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。
2.学会使用示波器观测电信号波形和电压副值以及频率。
3.学会使用示波器观察李萨如图并测频率。
【实验原理】
1.示波器都包括几个基本组成部分:
示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。
2.李萨如图形的原理:
如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。
如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。
【实验仪器】
示波器×1,信号发生器×2,信号线×2。
【实验内容】
1.基础操作:
了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。
明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。
2.观测李萨如图形:
向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“X-Y”方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。
设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较,一一求出它们的相对误差。
【实验数据】
【实验结果】
【误差分析】
1.两台信号发生器不协调。
2.桌面振动造成的影响。
3.示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。
4.取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准。
5.机器系统存在系统误差。
选取时上下跳动,可能取值不准。
相关知识
1 示波器工作原理
示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。
示波管
阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。
1.荧光屏
现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。
当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—为中余辉,为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。
由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。
2.电子枪及聚焦
电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的.辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。
电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。
3.偏转系统
偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。
4.示波管的电源
为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。
示波器的基本组成
从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。
示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。
被测信号①接到“Y“输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。
以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别
示波器实验报告 第38篇
一、实验目的
熟悉应用PHOTOSHOP 在图形处理中的操作,
二、实验内容
按照样张的样子把两张素材文件合并为一个图像文件。 保存文件为.psd (不得合并图层)
三、实验环境
实验应用系统及软件:WINDOWNS XP和PHOTOSHOP
四、实验步骤
1、从桌面上启动PHOTOSHOP
2、应用菜单栏中的“文件”菜单“打开”命令分别打开两个图形文件“城市风.JPG”和“云天.jpg”
3、应用“图象”—>“旋转画布”—>“水平反转画布”对文件“云天.jpg”进行转换。
4、使用方框工具选中中间图片,使用CTRL+j新建图层.
5、选择新建图层,并选择“魔术棒工具”大致选出“城市风光.jpg”文件中的建筑轮廓,并配合使用SHIFT、ALT键完成精细的选择。
6、使用“选择”菜单中的“反选”命令选中建筑图片拖动到云天图片中。
7、使用CTRL+T对图片进行自由变换使其符合云天图片大小。
8、保存文件名为
五、实验结果
在实验中着重应用了PHOTOSHOP中的图片反转、图层的建立、图片中的扣图、图片的自由变换,基本达到了实验目标。
六、总结
实验过程中,开始我不知道如何去除图片中的背景、经过请教摸索终于掌握了其应用方法。个人方面我觉得初次接触PHOTOSHOP很有收获。
示波器实验报告 第39篇
示波器作为电子测量领域中不可或缺的重要仪器,其广泛应用于电路分析、信号处理及故障诊断等方面。本实验通过实际操作,深入了解示波器的基本结构、工作原理及其使用方法,掌握使用示波器观测电信号波形、测量电压和频率等基本技能。通过本次实验,我们不仅能加深对电子测量技术的理解,还能提升解决实际电路问题的能力。
实验目的
1.了解示波器的基本机构和工作原理。
2.掌握使用示波器和信号发生器的基本方法。
3.学会使用示波器观测电信号波形、电压幅值以及频率。
4.学习通过李萨如图形法测量未知信号频率的方法。
实验仪器与设备
1.示波器×1
2.信号发生器×2
3.信号线×2
4.其他辅助工具(如万用表、连接线等)
实验原理
示波器是利用电子示波管的特性,将电信号转换为图像显示在荧光屏上,以便进行观察和测量的电子测量仪器。其核心部件是阴极射线管(CRT),主要由电子枪、偏转系统和荧光屏组成。通过控制电子束在荧光屏上的偏转,示波器能够显示出被测信号的波形图。
在示波器的使用中,垂直偏转系统用于控制波形在垂直方向(电压)上的偏转,而水平偏转系统则用于控制波形在水平方向(时间)上的扫描。通过调节这两个系统的参数,可以观测到不同时间尺度和电压范围的信号波形。
实验步骤
1.实验准备
阅读示波器使用说明书,了解各旋钮和按钮的功能。
检查示波器和信号发生器的连接,确保所有设备均已正确接地。
接通示波器和信号发生器的电源,预热15分钟。
2.示波器基本设置
调节示波器的亮度、聚焦和水平、垂直位移旋钮,使扫描线清晰居中。
将示波器的扫描模式设置为“AUTO”或“NORM”,以便自动调整扫描速率和触发。
3.信号观测
向示波器的Y轴输入端(如CH1)接入一个已知频率和电压的正弦波信号。
调节垂直偏转因数和水平偏转因数,使波形在荧光屏上清晰显示。
观察并记录波形的形状、幅值、周期等参数。
4.李萨如图形法测频
向示波器的X轴和Y轴分别输入两个频率成简单整数比的.正弦波信号。
调节示波器的扫描时间旋钮至“X-Y”模式,使两路信号进行合成。
观察并绘制出不同频率比下的李萨如图形,分析图形特点与信号频率之间的关系。
利用李萨如图形法求出未知信号的频率,并与信号发生器读数值进行比较,计算相对误差。
实验结果与分析
1.观测结果
在实验中,我们成功观测到了清晰的正弦波信号波形,并通过调节示波器的各项参数,获得了不同时间尺度和电压范围的波形图。同时,我们还利用李萨如图形法成功测出了未知信号的频率,并与信号发生器读数值进行了对比。
2.数据分析
通过对比实验测量值与信号发生器读数值,我们发现两者之间存在一定的误差。误差的主要来源包括示波器本身的系统误差、测量过程中的操作误差以及信号源的不稳定性等。为了减小误差,我们在实验过程中采取了多次测量取平均值的方法,并对测量数据进行了逐差法处理。
结论
本次实验通过实际操作,使我们深入了解了示波器的基本结构和工作原理,掌握了使用示波器和信号发生器的基本方法。同时,我们还学会了使用示波器观测电信号波形、测量电压和频率等基本技能。通过实验数据的分析和处理,我们进一步加深了对电子测量技术的理解,并提升了解决实际电路问题的能力。
后续建议
为了进一步提高实验效果和测量精度,建议在后续实验中加强对示波器各项参数的调节和校准工作,并尝试使用不同类型的信号源和波形进行观测和分析。同时,还可以结合其他电子测量仪器(如万用表、逻辑分析仪等)进行综合实验,以全面提升电子测量技能。
示波器实验报告 第40篇
示波器作为电子测量领域中的重要仪器,其广泛应用于科研、教学及工业生产中,能够将被测信号的波形直观显示在荧光屏上,便于观察、分析和测量。本实验目的是通过实际操作,使学生深入了解示波器的基本结构、工作原理以及使用方法,掌握利用示波器观测电信号波形、测量电压和频率等基本技能。通过本次实验,不仅能够加深对电子测量技术的理解,还能提升解决实际问题的能力。
实验目的
1、了解示波器的基本结构和工作原理。
2、掌握使用示波器和信号发生器的基本方法。
3、学会使用示波器观测电信号波形、电压幅值以及频率。
4、学习使用示波器观察李萨如图并测量频率。
实验器材
1、示波器×1
2、信号发生器×2
3、信号线×2
4、万用表(备用)
实验原理
示波器主要由示波管、电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统等组成。其核心部件是示波管,它利用电子束在电场中的偏转来描绘被测信号的波形。当被测信号加到Y轴偏转板上时,电子束在垂直方向上发生偏转;同时,锯齿波电压加到X轴偏转板上,使电子束在水平方向上产生扫描,从而在荧光屏上形成稳定的波形图。
示波器的工作原理可以概括为:将被测信号经过衰减、放大等处理后,分别加到示波管的X轴和Y轴偏转板上,通过控制电子束的偏转来描绘出信号的波形。
实验步骤
1、仪器准备
阅读示波器使用说明书,了解各旋钮的功能。
接通示波器电源开关,进行预热。
检查信号发生器是否正常工作,设定合适的输出频率和幅值。
2、观察基本波形
将信号发生器的输出接到示波器的`Y轴输入端。
调节示波器的“扫描时间”旋钮,观察不同扫描速度下的波形变化。
调节“垂直偏转因数”旋钮,观察波形在垂直方向上的变化。
3、观察李萨如图
向示波器的X轴和Y轴分别输入两个频率相同或成简单整数比的正弦波信号。
调节“扫描时间”旋钮至“X-Y”模式,使两路信号进行合成。
观察并绘制不同频率比下的李萨如图形,分析图形特点与信号频率之间的关系。
4、测量电压和频率
使用示波器测量信号的电压幅值,通过“垂直偏转因数”和波形占用的格数进行计算。
使用周期换算法或李萨如图形法测量信号的频率。
实验结果与分析
1、波形观察
在实验中,我们成功观察到了正弦波、方波等基本波形,并通过调节扫描时间和垂直偏转因数,观察到了波形在时间和幅度上的变化。这些波形清晰、稳定,验证了示波器在信号观测方面的准确性。
2、李萨如图观察
通过向示波器的X轴和Y轴输入不同频率比的正弦波信号,我们观察到了多种李萨如图形。这些图形具有独特的形状和周期性,与输入信号的频率比密切相关。通过测量图形上的切点数,我们可以准确计算出两个信号的频率比。
3、电压和频率测量
使用示波器对信号进行了电压和频率的测量。通过计算波形占用的格数和垂直偏转因数,我们得到了信号的电压幅值;通过周期换算法和李萨如图形法,我们测量了信号的频率,并与信号发生器的读数进行了比较,验证了测量结果的准确性。
实验结论
本次实验通过实际操作,使我们深入了解了示波器的基本结构和工作原理,掌握了示波器的使用方法。通过观察基本波形、李萨如图以及测量电压和频率等实验内容,我们不仅加深了对电子测量技术的理解,还提高了实际操作能力和解决问题的能力。未来,我们将继续深入学习电子测量技术,为未来的科研和工作打下坚实的基础。