霍尔效应实验报告讨论题(实用9篇)

时间:2025-07-01 03:34:57 admin 今日美文

霍尔效应实验报告讨论题 第1篇

一.实验目的

1. 认识霍尔效应,理解产生霍尔效应的机理。

2. 测绘霍尔元件的VH?IS、VH?IM曲线,了解霍尔电势差VH与霍尔元件工作电流IS、磁

感应强度B及励磁电流IM之间的关系。

3. 学习用“对称交换测量法”消除负效应产生的系统。

二.实验原理

1.霍尔效应法测量磁场原理

一块长方形金属薄片或者半导体薄片,若在某方向上通入电流IS,在其垂直方向上加一磁场B,则在垂直于电流和磁场的方向上将产生电位差VH,这个现象称为霍尔效应。VH称为霍尔电压。它们之间有如下关系:VH?RH

ISBd

上式中,RH称为霍尔系数,d是薄片的厚度。 霍尔电压的产生可以用洛仑兹力来解释。如图4-1所示,半导体块的厚度为d、宽度为b,各种物理量的方向如图上所示,则自由电子以平均速度v沿x轴负方向作定向运动,所受洛仑兹力为 FB?ev?B

在此力的作用下自由电子向板的侧端面聚集,同时在另一个侧端面上出现同样的正电荷。这样就形成了一个沿y方向的横向电场,使自由电子同时也受到电场力FE的作用,即:

FE?eE?eVH/b

最后在平衡状态下,有:FB=FE,即 evB=eVH/b,化简得到:VH=vBb (1) 设块体内的载流子浓度n,则电流IS与载流子平均速v的关系为:v?

ISdbne

(2)

将上式代入(1)得:VH?

ISBned

或者VH?K

ISB (3)

其中,KH为霍尔元件的灵敏度。单位是V/(A・T)。 2、霍尔电压的VH测量方法(实验中的副效应)

在产生霍尔效应的同时,也伴随着各种副效应,所以实验测量的VH不是真实的霍尔电压值。因为测量霍尔电压的电极A和A?的位置难以做到在一个理想的等势面上,如图4-2所示:

图4-2 副效应

因此,当有电流流过样品时,即使不加磁场也会产生附加电压VO?ISR,其中R为A和A?的两个等势面之间的电阻,VO的符号只与电流的方向有关,与磁场的方向无关。可以通过改变IS和B的方向消除VO。除副效应VO外,还有热效应、热磁效应等,不过这些效应除个别外,均可以通过改变IS和B的方向消除。

对霍尔电压VH的处理。在规定了电流和磁场的正反方向后,分别测量由以下四组不同反方向的IS和B的组合的VH,即:

则: VH?

V1?V2?V3?V4

(4)

这种测量VH的方法称为“对称测量法”,求得的VH,虽然还存在个别无法消除的副效应,

但其引入的误差很小,可以忽略不计(详见附录分析)。

二.实验仪器使用说明

1. 仪器的组成

图4-3 仪器主机示意

本仪器由励磁恒流元IM、样品工作恒流元IS、数字电流表、数字电压表、霍尔效应实验装置等组成。仪器主机面板分布如图一所示。

主机面板分布说明: (1) IM恒流源

在面板的右侧,红黑接线柱分别表示该电源的输入和输出。右侧的数字表显示IM的电流值。单位:安培 (2) IS恒流源

在面板的中侧,红黑接线柱分别表示该电源的输入和输出。中间的数字表显示IS的电流值。单位:毫安 (3) VH输入

在面板的左侧,红黑接线柱分别为该VH测量输入端的正负极性。左侧的数字表显示VH的电压值。单位:毫伏

(4) “200mV”和“20mV”转换开关,此开关为量程转换开关。 2. 实验平台

(1)主机上的“VH输入”、“”和“”分别对应实验平台上的“霍尔电压”、“工作电压”和“励磁电流”。

注意:千万不要将IM和IS接错,否则IM电流将可能烧坏霍尔样品。

(2)仪器开机之前,先将“IS调节”和“IM调节”旋钮逆时针旋到底,使IS输出和IM输出均为最小。

霍尔元件

(3)仪器接通电源后,预热五分钟。将电压测量量程转换开关拨置“20mA”档,然后将 电压测量输入短路,调整调零电位器使电压指示为零。

(4)“IS调节”“ IM调节”两旋钮分别用来控制样品的工作电流和励磁电流的大小,其电流值随旋钮顺时针方向的转动而增加,调节精度分别为“10μA”和“1mA”。

(5)仪器关机之前,先将“IS调节”和“IM调节”旋钮逆时针旋到底,然后切断电源。

图4-4 测试平台

三.实验内容

1. 霍尔效应的输出特性测量

(1) 按图示连接好仪器。

(2) 调节霍尔效应元件探杆支架的X、Y方向的旋钮,慢慢的将霍尔效应元件移到励

磁线圈的中心位置。

(3) 测绘VH-IS曲线

取IM=,并在测量过程中保持不变。依次按照表4-1所列数据调节IS,测出相应的V1、V2、V3、V4值,记入表4-1并绘制VH-IS曲线。根据(3)式它们应该成正比。

表4-1 IM=

(4) 测绘VH-IM曲线

取IS=,并在测试过程中保持不变。依次按照表4-2所列数据调节IM,测出相应的V1、V2、V3、V4值,记入表4-2并绘制VH-IM曲线。根据(3)式它们应该成正比。 表4-2 IS=

2. 测绘励磁线圈轴线上磁感应强度的分布

取IM=,IS=,并在测试过程中保持不变。以相距励磁线圈两端口等远的中心位置为坐标原点建立坐标(如下图所示),调节“Y方向调节螺丝”旋钮,改变霍尔元件的.位置y,对称的选取10个点,按对称法测出各相应位置的V1、V2、V3、V4,并计算VH及B的值。

绘制B-y曲线。

图4-5 励磁线圈上建立坐标

表4-3:励磁线圈y方向的磁感应强度

四.思考题

1.对称测量法能否完全消除副效应影响?你能想出更好的实验方法吗? 2.霍尔元件通以交变电流时如何测量所产生的霍尔电压? 3.如何根据霍尔电压的正负来判别半导体材料的导电类型?

附:霍尔效应的副效应及其消除(参照图4-2)

(1)电极位置不对称产生的电压降U0:在制备霍尔样品时,y方向的测量电极很难做到处于理想的等位面上,即使在未加磁场时,在AA?两电极间也存在一个由于不等位电势引起的欧姆压降U0,U0方向只与IS方向有关。

(2)爱廷豪森(Ettinghausen)效应:处于磁场中的霍尔元件通以电流时,由于载流子迁移速度的不同,它们在磁场中受到的洛仑兹力也不相同,速度大的受到的洛仑兹力大,绕大圆轨道运动;速度小的则绕小圆轨道运动。这样导致霍尔元件的一端较另一端具有较高的能量而形成温度梯度,从而形成温差电压UE。这就是爱廷豪森效应。UE的大小与I、B的乘积

成正比,随I、B的换向而改变正负极性。

(3)能斯托(Nernst)效应:霍尔元件电流引线端焊接点的接触电阻往往是不同的。当有电流通过时,两焊点之间产生温差,形成热扩散电流,于是在磁场的作用下,产生附加电压UN ,UN的正负取决于磁场B的方向。

(4)里纪-勒杜克(Righi-Ledue)效应:上述热扩散电流载流子的迁移速率是不相同的,在磁场的作用下产生类同于爱廷豪森效应的附加温差电动势URL ,这一效应称里纪-勒杜克效应,URL的方向只与B的方向有关。

上述4种副效应产生的附加电压叠加在霍尔电压上,形成测量中的系统误差来源,测量时应设法减小或消除。由于副效应引起的附加电压的正负与电流和磁场的方向有关,因此测量时通过改变电流和磁场的方向基本上可以消除这些附加误差的影响。具体可按下面4种组合方式测量霍尔元件上下两端的电压:

?B,?I?B,?I?B,?I?B,?I

U1?UH?UE?UN?URL?U0U2??UH?UE?UN?URL?U0U3?UH?UE?UN?URL?U0U4??UH?UE?UN?URL?U0

由上述4组测量结果可得:UH?(U1?U2?U3?U4)/4?UE

UE比UH小得多,可略去不计,于是霍尔电压为:UH?(U1?U2?U3?U4)/4

霍尔效应实验报告讨论题 第2篇

一、实验目的和要求

实验目的

理解霍尔效应的基本原理:通过实验观察并理解当电流通过置于磁场中的导体(霍尔元件)时,其两侧产生的电势差(霍尔电压)与磁场强度、电流强度及导体材料性质之间的关系。

掌握霍尔效应的应用:了解霍尔效应在磁场测量、电流检测、速度测量、位移传感等领域的应用原理。

培养实验操作能力:通过实验操作,提高学生的动手能力、数据记录与分析能力。

实验要求

正确组装实验装置,确保实验安全。

准确测量并记录实验数据,包括电流、磁场强度及霍尔电压。

分析实验数据,验证霍尔效应公式,并讨论可能的误差来源。

撰写实验报告,清晰阐述实验原理、过程、结果及结论。

二、实验原理

霍尔效应是指当电流垂直于外磁场通过导体(霍尔元件,通常为半导体材料)时,在导体的两侧会产生电势差(霍尔电压)的现象。这一效应是由磁场对运动电荷的洛伦兹力作用导致的。霍尔电压VH的`大小与磁场强度B、电流强度I以及霍尔元件的厚度d和载流子迁移率等物理量有关,可表示为:

V_H = frac{R_H I B}{d} ] 其中,(R_H)为霍尔系数,是材料本身的性质。

三、实验仪器

1.霍尔效应实验仪:包括霍尔元件、电流源、磁场发生器、电压表等。

2. 直流电源:用于提供稳定的电流。

3. 磁场发生器:产生可调节的均匀磁场。

4. 数字电压表:精确测量霍尔电压。

5. 万用表:辅助测量电流等参数。

6. 导线与接线柱:用于连接各实验部件。

四、实验内容及实验数据记录

实验内容

1. 装置搭建:将霍尔元件置于磁场发生器中心,通过导线连接至电流源和数字电压表。

2. 预调节:调节磁场发生器和电流源至初始值(如磁场为零,电流较小)。

3. 数据记录:

固定电流强度,逐步增加磁场强度,记录对应的霍尔电压。

固定磁场强度,逐步改变电流强度,记录对应的霍尔电压。

五、实验数据处理与分析

数据处理

1. 绘制关系图:分别绘制霍尔电压(V_H)随磁场强度(B)变化的曲线(固定电流)和霍尔电压(V_H)随电流强度(I)变化的曲线(固定磁场)。

2. 计算霍尔系数:选取一组数据,利用霍尔效应公式计算霍尔系数(R_H),并与理论值或仪器说明中的值进行比较。

数据分析

1. 验证霍尔效应公式:观察实验数据是否符合霍尔效应公式预测的趋势,即霍尔电压与磁场强度和电流强度的乘积成正比。

2. 误差分析:分析实验中的误差来源,可能包括磁场不均匀性、电流源稳定性、测量仪器的精度限制、接线电阻等。

3. 应用讨论:结合实验数据,讨论霍尔效应在实际应用中的优势和局限性,以及如何通过改进实验条件来减小误差。

通过本次实验,我们成功观察到了霍尔效应,验证了霍尔电压与磁场强度和电流强度的关系,并计算了霍尔系数。实验数据基本符合霍尔效应的理论预测,但仍存在一定误差,需进一步优化实验条件以提高测量精度。本次实验加深了对霍尔效应原理及其应用的理解,为后续的学习和研究打下了基础。

霍尔效应实验报告讨论题 第3篇

一、实验目的

1. 了解霍尔效应的基本原理。

2. 学会用霍尔效应测量磁场的方法。

3. 掌握霍尔元件的特性和应用。

二、实验原理

霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象就是霍尔效应。

其中,(U_{H}) 为霍尔电势差,(K_{H}) 为霍尔元件的灵敏度,(I) 为电流,(B) 为磁场强度,(d) 为霍尔元件的厚度。

三、实验仪器

霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计等。

四、实验步骤

1. 连接实验仪器,将霍尔元件放入磁场中,确保磁场方向与霍尔元件表面垂直。

2. 调节直流电源,给霍尔元件通以一定的.电流 (I),记录毫安表的读数。

3. 用特斯拉计测量磁场强度 (B),并记录。

4. 测量霍尔元件在不同电流和磁场强度下的霍尔电势差 (U_{H}),记录伏特表的读数。

五、实验数据记录与处理

| (I) (mA) | (B) (T) | (U_{H}) (mV) |

| ---- | ---- | ---- |

| | | |

| | | |

| | | |

| | | |

根据实验数据,绘制 (U_{H}-IB) 曲线,通过斜率计算霍尔元件的灵敏度 (K_{H})。

六、实验误差分析

1. 测量仪器的精度有限,会导致测量数据存在误差。

2. 实验过程中,磁场的不均匀性也会影响实验结果。

3. 霍尔元件的安装位置不准确,可能导致磁场与霍尔元件表面不完全垂直。

七、实验结论

通过本次实验,我们深入了解了霍尔效应的原理和应用。实验结果表明,霍尔电势差与电流和磁场强度成正比,符合霍尔效应的理论公式。同时,通过对实验数据的处理和分析,我们计算出了霍尔元件的灵敏度,为其在实际应用中的测量和控制提供了重要的参数。

霍尔效应实验报告讨论题 第4篇

[线上学习不用写]

1、按霍尔效应实验原理图,正确连线。

2、调节霍尔元件片使其置于磁场中央。

3、在零磁场下,测量霍尔元件片的不等位电势。

4、保持Im不变,取Im=,Is取,,测绘Vh-Is曲线,计算Rh。

5、保持Is不变,取Is=,Im取,

0mA,测绘Vh-Im曲线。

6、保持工作电流的值不变,改变励磁电流的值,测量霍尔电压值。

7、计算霍尔效应系数Rh,霍尔元件的载流子浓度n,霍尔元件的电导率б,霍尔元件的载流子迁移率μ。

霍尔效应实验报告讨论题 第5篇

一、实验目的和要求

了解霍尔效应原理:通过本次实验,深入理解霍尔效应的基本原理,即导电材料中的电流与磁场相互作用时产生电动势的现象。

测量霍尔元件参数:测绘霍尔元件的VH-IS和VH-IM曲线,了解霍尔电势差VH与霍尔元件控制电流IS、励磁电流IM之间的关系。

学习磁场测量:利用霍尔效应测量磁感应强度B及磁场分布,掌握利用霍尔元件测量磁场的方法。

计算载流子浓度和迁移率:通过实验数据,计算霍尔元件中载流子的浓度和迁移率,进一步理解半导体材料的电学性质。

消除系统误差:学习使用“对称交换测量法”来消除实验中可能产生的负效应系统误差,提高测量精度。

二、实验原理

霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这个电势差被称为霍尔电势差VH。从本质上讲,霍尔效应是运动的带电粒子(电子或空穴)在磁场中受洛仑兹力的作用而引起的偏转,导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

霍尔电压VH与IS、B的乘积成正比,与霍尔元件的厚度d成反比,比例系数RH称为霍尔系数。根据材料的电导率σ=neμ的关系,还可以得到霍尔系数与载流子浓度n和迁移率μ的关系。

三、主要实验仪器

霍尔效应测试仪

电磁铁

二维移动标尺

三个换向闸刀开关

霍尔元件及引线

特斯拉计(用于测量磁感应强度B)

四、实验内容及数据记录

测量霍尔元件灵敏度KH

调节励磁电流IM为,使用特斯拉计测量此时气隙中心磁感应强度B的大小。

移动二维标尺,使霍尔元件处于气隙中心位置。

调节IS从至(数据采集间隔),记录对应的VH值,描绘IS-VH关系曲线,求得斜率K1(K1=VH/IS),从而求得KH。

计算载流子浓度n和迁移率μ

调节IS并测量对应的输入电压降VI,描绘IS-VI关系曲线,求得斜率K2(K2=IS/VI)。

已知KH、霍尔元件长度L、宽度W,根据公式计算载流子迁移率μ。

判断霍尔元件半导体类型

根据电磁铁线包绕向及励磁电流IM的流向,判定气隙中磁感应强度B的方向。

根据换向闸刀开关接线以及霍尔测试仪IS、VH输出端引线,判断IS和VH的流向。

结合VH的正负与霍尔片上正负电荷积累的对应关系,判定霍尔元件半导体的.类型(P型或N型)。

测量VH与IM的关系

霍尔元件仍位于气隙中心,调节IS为,调节IM从100mA至1000mA(间隔为100mA),分别测量VH值,并绘出IM-VH曲线。

测量电磁铁气隙中磁感应强度B的大小及分布情况

调节IM在0-1000mA范围内变化,使用特斯拉计测量不同位置处的磁感应强度B,记录并分析B的分布情况。

五、实验数据处理与分析

对IS-VH、IS-VI曲线进行线性拟合,求得斜率K1和K2。

根据K1计算霍尔元件灵敏度KH,进而求得载流子浓度n。

利用K2和已知参数计算载流子迁移率μ。

分析IM-VH曲线的线性关系范围,探讨IM达到一定值后曲线斜率变化的原因。

绘制电磁铁气隙中磁感应强度B的分布图,分析磁场分布特点。

六、质疑与建议

在实验过程中,应注意消除各种可能产生系统误差的因素,如温度变化、电磁干扰等。

实验中应严格控制变量,确保实验结果的准确性和可靠性。

建议进一步探讨不同材料和结构的霍尔元件对实验结果的影响,以丰富实验内容并拓展研究深度。

霍尔效应实验报告讨论题 第6篇

实验内容:

1. 保持 不变,使Im从到变化测量VH.

可以通过改变IS和磁场B的方向消除负效应。在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VH,即

+B, +I

VH=V1

—B, +

VH=-V2

—B, —I

VH=V3

+B, -I

VH=-V4

VH = (|V1|+|V2|+|V3|+|V4|)/4

画出线形拟合直线图:

Parameter Value Error

------------------------------------------------------------

A

B

------------------------------------------------------------

R SD N P

------------------------------------------------------------

9 <

2.保持IS= ,测量Im—Vh关系

VH = (|V1|+|V2|+|V3|+|V4|)/4

Parameter Value Error

------------------------------------------------------------

A

B

------------------------------------------------------------

R SD N P

------------------------------------------------------------

9 <

基本满足线性要求。

2. 判断类型

经观察电流由A’向A流,B穿过向时电势上低下高所以载流子是正电荷空穴导电。

4.计算RH,n,σ,μ

线圈参数=5200GS/A;d=;b=;L=

取Im=;由线性拟合所得直线的斜率为(Ω)。

B=Im*5200GS/A=2340T;有 Ω。

若取d的单位为cm;

磁场单位GS;电位差单位V;电流单位A;电量单位C;代入数值,得RH =6762cm3/C。

n=1/RHe=。

=(S/m);

=(cm2/Vs)。

思考题:

1、若磁场不恰好与霍尔元件片底法线一致,对测量结果有何影响,如果用实验方法判断B与元件发现是否一致?

答:若磁场方向与法线不一致,载流子不但在上下方向受力,前后也受力(为洛仑兹力的两个分量);而我们把洛仑兹力上下方向的分量当作合的洛仑兹力来算,导致测得的Vh比真实值小。从而,RH偏小,n偏大;σ偏大;μ不受影响。

可测量前后两个面的电势差。若不为零,则磁场方向与法线不一致。

2、能否用霍尔元件片测量交变磁场?

答:不能,电荷交替在上下面积累,不会形成固定的电势差,所以不可能测量交变的磁场。

霍尔效应实验报告讨论题 第7篇

连续变温霍尔效应测量的程控软件设计

反常霍尔效应虽然已被发现一百余年,但对其产生机理现在仍存在不同的.观点.本文介绍了一种可连续控温的霍尔效应测量系统.该系统的电路采用相干双交流电桥;在LabVIEW软件平台下,以LabVIEW和C混合编程完成整个系统的控制,该系统可实现从液氦温度到室温的精确控温、仪器的远程控制和数据的采集处理,用于镍薄膜的霍尔测量,效果良好.

宋小会,张殿琳,SONG Xiao-hui,ZHANG Dian-lin(中国科学院物理研究所,北京,100080)

霍尔效应实验报告讨论题 第8篇

【实验目的】

1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

【实验仪器】

霍尔效应实验报告讨论题 第9篇

【实验目的】

1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

【实验仪器】

液晶电光效应实验仪一台,液晶片一块

【实验原理】

1.液晶光开关的工作原理

液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。 取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。

在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过。

在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构。从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。

由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。

液晶可分为热致液晶与溶致液晶。热致液晶在一定的温度范围内呈现液晶的光学各向异性,溶致液晶是溶质溶于溶剂中形成的液晶。目前用于显示器件的都是热致液晶,它的特性随温度的改变而有一定变化。

2.液晶光开关的电光特性

对于常白模式的液晶,其透射率随外加电压的升高而逐渐降低,在一定电压下达到最低点,此后略有变化。可以根据此电光特性曲线图得出液晶的阈值电压和关断电压。

3.液晶光开关的时间响应特性

加上(或去掉)驱动电压能使液晶的开关状态发生改变,是因为液晶的分子排序发生了改变,这种重新排序需要一定时间,反映在时间响应曲线上,用上升时间τr和下降时间τd描述。给液晶开关加上一个周期性变化的电压,就可以得到液晶的时间响应曲线,上升时间和下降时间。

上升时间:透过率由10%升到90%所需时间;下降时间:透过率由90%降到10%所需时间。液晶的响应时间越短,显示动态图像的效果越好,这是液晶显示器的重要指标。早期的液晶显示器在这方面逊色于其它显示器,现在通过结构方面的技术改进,已达到很好的效果。

4.液晶光开关的视角特性

液晶光开关的视角特性表示对比度与视角的关系。对比度定义为光开关打开和关断时透射光强度之比,对比度大于5时,可以获得满意的图像,对比度小于2,图像就模糊不清了。

5.液晶光开关构成图像显示矩阵的方法

除了液晶显示器以外,其他显示器靠自身发光来实现信息显示功能。这些显示器主要有以下一些:阴极射线管显示(CRT),等离子体显示(PDP),电致发光显示(ELD),发光二极管(LED)显示,有机发光二极管(OLED)显示,真空荧光管显示(VFD),场发射显示(FED)。这些显示器因为要发光,所以要消耗大量的能量。

液晶显示器通过对外界光线的开关控制来完成信息显示任务,为非主动发光型显示,其最大的优点在于能耗极低。正因为如此,液晶显示器在便携式装置的显示方面,例如电子表、万用表、手机、传呼机等具有不可代替地位。下面我们来看看如何利用液晶光开关来实现图形和图像显示任务。